IOWA STATE UNIVERSITY Digital Repository

Retrospective Theses and Dissertations

Iowa State University Capstones, Theses and Dissertations

1975

U.S. electrical energy dilemma and an energy model for the electrical utilities of Iowa

Turan Gonen Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the <u>Electrical and Electronics Commons</u>

Recommended Citation

Gonen, Turan, "U.S. electrical energy dilemma and an energy model for the electrical utilities of Iowa" (1975). *Retrospective Theses and Dissertations*. 5476. https://lib.dr.iastate.edu/rtd/5476

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digrep@iastate.edu.

INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

- 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
- 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.
- 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again beginning below the first row and continuing on until complete.
- 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.
- 5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

Xerox University Microfilms 300 North Zeeb Road Ann Arbor, Michigan 48106

76-1841

GONEN, Turan, 1941-U. S. ELECTRICAL ENERGY DILEMMA AND AN ENERGY MODEL FOR THE ELECTRICAL UTILITIES OF IOWA.

Iowa State University, Ph.D., 1975 Engineering, electronics and electrical

Xerox University Microfilms, Ann Arbor, Michigan 48106

OP INTER CARLING TO THE PARTY OF A PARTY OF A

PLEASE NOTE:

,

.

Page 94 is not available for photography.

UNIVERSITY MICROFILMS

U. S. electrical energy dilemma and an energy model for the electrical utilities of Iowa

by

Turan Gonen

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF FHILOSOPHY

Major: Electrical Engineering

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

For the Major Department

Signature was redacted for privacy.

For the Graduate College

Iowa State University Ames, Iowa

TABLE OF CONTENTS

			Page
I.	INTRODUCTION		
II.	REVIEW OF THE LITERATURE		
	A.	Energy Dilemma	7
	в.	Energy Forecasts	13
111.	ENERGY DEMAND PROBLEM		
	A.	The Role of Energy	17
	В.	Energy Consumption Growth	19
	c.	Emergy Consumption	25
	D.	U. S. and World Population Growth	30
	E. Energy Forecasts		
	F. Future Society		
	G. Energy Demand Forecast for the 21st Century		
IV.	ENERGY SUPPLY PROBLEM		
	A. Developments in Fuel Consumption		
	в.	Energy Resources	91
		 With present technology With future technology 	91 95
	с.	Fuel Supply Forecasts	97
	D.	The Impact of Advanced Technology	111
		 Coal Nuclear fission Geothermal energy Oil Fusion Solar Energy 	111 117 117 118 120 122
	E.	The Limits to Energy Growth	124

		Page	
	1. Resources	124	
	2. Pollution	125	
	3. Climatic effects	125	
	F. Fuel Supply Forecast for the 21st Century	7 128	
V.	DEVELOPMENT OF AN ELECTRICAL ENERGY MODEL FOR IOWA UTILITIES		
	A. Introduction		
	B. Structure of the Model	132	
	1. General discussion	132	
	2. Mathematical model	135	
	3. Energy requirement restriction	143	
	4. Energy capacity restriction	144	
	5. Sulfur emission restriction	146	
	6. Fuel availability restriction	150	
	7. Annual electrical energy purchases		
	and sales restrictions	152	
	8. General restrictions	155	
		199	
	C. The Application of Demand Duration Curves in the Model	s 155	
	D. Input Data	158	
VI.	. THE RESULTS OF ELECTRICAL ENERGY MODEL APPLICATIONS		
VII.	SUMMARY AND CONCLUSIONS	219	
VIII.	RECOMMENDED FUTURE WORK		
IX.	REFERENCES	222	
x.	ACKNOWLEDGMENTS		
XI.	APPENDIX A: ANNUAL LOAD FACTOR	235	
XII.	APPENDIX B: THE EXPONENTIAL GROWTH	239	
XIII.	APPENDIX C: THE IMPACT OF ELECTRIC CARS ON LOAD FACTOR	244	
XIV.	APPENDIX D: A COMPUTER PROGRAM TO CALCULATE THE AREA UNDER A GIVEN CONSUMPT CURVE		

			rage
XV.		COMPUTER PROGRAM FOR DEMAND RECASTING SUBMODEL	248
XVI.		MPUTER OUTPUTS OF THE FAM MODEL R THE IOWA POOL APPLICATION	251
XVII.		EL CONSUMPTION AND COST MOGRAPHS	279
XVIII.		NEAR PROGRAMMING COMPUTATIONS ING MPSX SYSTEM	291
	A. Data Format		291
	B. Data Preparation C. Control Program		293
			295
	D. Multiple C	Rows	297
	E. Combination of Multiple C Rows and Multiple B Rows		299
	F. Other Comma	nds	306
	G. Interpretat	ion of Computer Output	306
XIX.	APPENDIX I: GL	OSSARY	326

Dago

I. INTRODUCTION

As a society becomes more wealthy, it can and does provide more goods and services that require larger amounts of energy. The climate and economic specialization of a region, as well as the cost of energy, can affect the relationship between energy consumption and standard of living. Nevertheless, it is reasonable to expect that as a nation increases its per capita income, its consumption of energy will also rise.

The United States has entered an era of profound alteration in traditional patterns and trends in the field of energy. Price relationships, rates of use, sources of supply, and national security all have become areas affected with uncertainty and conflict.

While the need for concern regarding the rapid depletion of the U.S. energy resources has long been evident to those in the energy field, awareness of the seriousness of the situation has only recently become apparent to the general public. The use of the phrases, "The Energy Crisis" or "The Energy Dilemma" has contributed to this awareness and to the need to work toward a satisfactory solution.

The Arab oil embargo of recent years has greatly aggravated this crisis. However, the underlying causes lie farther back in the past and hopes of long term remedies lie well into the future. Full-blown energy problems did not hit the country until 1973, although there were much earlier hints of impending trouble. Among them were the refusal of numerous natural gas utilities to connect new residential customers, and and voltage reductions and load shedding instituted by a number of eastern electric utilities during summer peak load periods.

As electric systems become progressively more complex and interconnections proliferate, system planning becomes an increasing challenge in the electric utility industry. Generally, the system planning activities center on definitive short term analysis of power system performance with peak load projections up to ten years in the future. System planning is more than a one-man or one-department problem. Development of reliable and economical systems requires the skills of systems operators and the judgement of management as well as the talents of planning engineers.

All factors considered, computer programs are useful tools for the development of reliable and economical systems. Generally, all system planning activities may be divided into three tasks: 1) synthesis creation and development of preliminary plans, 2) analysis - technical evaluation of reserve requirements and simulated operation for load flow and stability analysis, 3) optimization - economic evaluation to identify minimum cost alternatives from plans to meet reliability criteria. To perform these tasks, numerous quantitative modeling techniques, which are mostly computerized, are available and are used extensively. Load flow, system stability, short circuit, system expansion, reliability, and numerous other modeling programs are used for accurate analysis. Repetitive analysis of this kind, tempered with sound judgment, is the basic approach to system synthesis.

Such short term planning is a must for all growing utilities. But, long term conceptual planning is also needed to evaluate conditions that will affect the whole industry as well as individual utilities, thirty

years or more into the future. Such planning activities are frequently deferred in lieu of seemingly more critical problems, but their importance should not be underestimated.

It is essential that research and development (R & D) investment priorities reflect the future needs of the country as well as those of individual companies. These future needs should be defined, since much research concerning new techniques is already underway and R & D investment decisions are continually being made by both industry and government. Some information about future needs and problems may, of course, be derived from short term analyses and forecasts, but short term planning provides no information concerning the extensiveness, seriousness or persistence of these problems in the more distant future. Presently, there are problems which are unsolvable by conventional means that eventually were revealed by short term planning, and that might not now exist, had they been anticipated through long range analysis and planning at an earlier time.

The present deplorable natural gas situation is an excellent example of the consequence of insufficient long range planning. Even though natural gas is less plentiful than any other fossil fuel, low prices were fostered in the 1950's and 1960's. Consequently, the consumption of natural gas increased very rapidly, so that it now accounts for about one-third of all energy consumed in this country. The low prices not only increased consumption, but also provided no incentive for further exploration. The natural gas shortage was already a reality when the problem finally was recognized.

Because of the rapid changes in technology, fuel resources, and environmental constraints, the need for long term system planning becomes more urgent than in the past. Long term planning is not intended to specify step-by-step detailed system developments, but rather to outline the most likely system expansion pattern based on today's view of the future. Long term planning provides a guide for initiating short term decisions and actions, outlining R & D requirements and priorities, and recommending utility policies and their associated timing. A long term system evaluation enables planners to explore various options in supplying electric energy and their associated effects on fuel resources, land, water, and financial requirements.

Anyone undertaking long term planning must keep abreast of knowledge in several interrelated disciplines, since developments in any of them could affect the whole energy field. For instance, transmission requirements are affected by power plant technology and siting, which in turn are affected by fuel developments.

Long term planning must be quantitative as well as qualitative. This is a direct consequence of the fact that the essential characteristics of and the relationships between the various energy related fields are quantitative in nature. But, it is not essential or possible for long term analyses to be as precise as short term analyses must be, which can pose a problem for engineers who are accustomed to working with accuracy. It is impossible to attain true precision when forecasting and planning for the distant future, but this does not preclude the necessity of quantitative analyses, nor does it render long term planning invalid -

it just makes it more challenging. To be worthwhile, the forecast must simply allow better operation than could be achieved without it. Quinn (1) states that the alternative is to continue to act on simple hunches about the future and to do this, says Quinn, is to be irresponsible.

The first part of this study, which is discussed in Chapters II, III, and IV, deals with the entire energy field, particularly stressing electric power. Energy sources are examined; energy supply and demand are projected to the year 2000 on the basis of statistical data; various U. S. energy forecasts are compared; and some energy-related topics are discussed in relation to these forecasts. The subject studied is extremely broad, and of necessity, some areas are treated more lightly than others.

In the second part of this study, which is discussed in Chapters V and VI, and computerized electric energy cost model was developed for the electric power industry to minimize the cost of energy used for electric generation by optimum allocation of various fuel-mixes over a period of n years, where the energy is subject to a large number of physical and environmental constraints. A mechanism was built into the model, which facilitated rapid evaluation of the consequences of different proposed energy policies.

In order to keep the size of the model within reasonable bounds (because of a limited computer budget, difficulties involved in obtaining the necessary coefficients, and a time limitation), the model is applied to the State of Lowa rather than to the whole country. Results of the applications of the model are presented in Chapter VI.

Some studies and computer output and programs, if included in the

body of the text, would distract from the main theme. These are included in the Appendices, and attention is directed to them wherever appropriate. Also, in order to define some of the terms encountered most commonly in discussing energy, both in this study and in general usage, a glossary is included.

II. REVIEW OF THE LITERAT

A. Energy Dilemma

An extensive literature search was done concerning the energy dilemma of the United States (1-171). Many papers were found on the general concepts of energy rather than on the future of the problem. Most of the concepts in these papers are reviewed in the following chapters in order to compare the results of this study with the results of the others.

What is the dilemma in energy? To many scientists, the dilemma is a temporary phenomenon, which will be resolved soon by the availability of cheap and abundant nuclear power. Many nonscientists think of it only in terms of power brownouts or gas shortages. It has also become fashionable to blame the environmentalists for the problem.

Dalal (2) pointed out that the energy problem was far more complex than power plant location or the trans-Alaska oil pipeline. He argued that the energy problem exists not only on the supply side, but also on the demand side. He suggests that some of the technological solutions that are popular today might not be desirable in the long run, and that new technological initiatives are necessary, along with certain changes in demand, to achieve energy stability. In the long run, however, he concludes that the problem cannot be solved by sophisticated technology alone, but will require the combined efforts of economists, technologists and sociologists to devise a stable, affluent society that can exists in harmony with nature.

Since many energy-associated problems are global in nature and must be solved in concert with other nations, some authors have tried to bring

a new perspective to the United States' energy dilemma by studying the world's energy resources and consumption.

In 1964, an extensive study was done by Guyol (3) which surveyed the electric power industry in 162 countries in the world. He concluded that the data that appear in national reports on the electric power industries of different countries do not fit into a single pattern. Consequently, it is difficult to compare the industry of one country with that of another. It is even more difficult to combine data on several countries and thus arrive at a composite picture of the electric power industry in the world, or in any major region of the world except Western Europe and the noncommunist portion of the Far East. The study attempted to correct this situation by collecting data on the electric power industry in every country of the world, putting these data in comparable forms, and combining them to produce certain regional and world aggregates.

Because the electric power industry is important not only in its own right but also because of its role in human affairs, Guyol has carried his study into an exploration of certain factors affecting or affected by the industry. He observes some relationships between the quantities of electricity consumed and amount of work performed in the economy as a whole and in particular sections of the economy.

In 1971, Darmstadter (4) studied quantitative aspects of long run trends in energy consumption, production, foreign trade, and transformation of the world's fuel base away from coal and toward oil and natural

gas during this century. He pointed out that these latter changes, which occurred at different times and rates in the major geographic regions, were particularly important for two reasons: they reflected significant changes which were taking place in the world's industrial life and in economic activity in general. Furthermore, they caused wholly new patterns of regional economic interdependence. This interdependence was seen most sharply in the industrial countries such as Japan, those in Western Europe and now the U.S. upon largely underdeveloped regions such as the Middle East and North Africa for their petroleum requirements.

In 1972, Felix (5) concluded that the industrialized nations need extra energy resources, because only increasing prosperity could provide a successful challenge to the environmental problems. These extra resources were also required to contribute more than they had in the past to needs in the underdeveloped areas within their own borders, as well as to reduce the growing gap between the industrialized nations as a whole and the developing world.

Freeman (6) wrote that there were several trends which combine to influence the future availability of energy. According to him these contributing factors include; 1) forecast of continued exponential growth in energy use, 2) forecast of continued growth in the portion of energy used as electricity, 3) continuing expectancy of the affluent to achieve an improved quality of life, 4) depletion of domestic oil and gas reserves, 5) concern for environmental protection.

Cook (7) studied the energy use pattern in the U.S. for 1970 and pointed out that two of the primary sectors of the budget, transportation

and electric power generation, are responsible for the relative inefficiency of energy usage. He also noted that electricity accounted for only fifteen percent of useful work performed, yet it is the component of energy people worry about most. This is because electric power generation has been increasing at a rate of seven percent annually (doubling every 10 years), whereas the energy budget has been increasing about 3.2 percent annually. The American Petroleum Institute claimed that the energy budget would increase at 4.1 percent annually in the coming decade. This indicates that per capita consumption is constantly increasing, which suggests that even strict birth control is not going to eliminate the need for more power (8).

Altman, et al. (9) also agree that continued exponential growth cannot continue forever. The reasons for this are simple: 1) the rate of utilization of fossil fuel, and in the near future nuclear fuels, is becoming a large fraction of the total supply. 2) The waste products of energy utilization such as waste heat and air and water pollutants are also becoming extensive enough to have adverse affects on the environment.

Multiple authors have assembled data on energy consumption in the past and some have forecasted future trends. Hottel and Howard (10) and Starr (11) have traced energy usage back to 1850, when wood was the dominant fuel, and documented the rise of coal, petroleum, natural gas, and hydroelectric power to 1970. Gaucher (12) extrapolated the data from 1800 to 1970 into the 21st and 22nd centuries. Cook (7) summarized the data and projections to the end of the 20th century in terms of the percentage of the total energy consumption attributable to each fuel. In addition,

Hottel and Howard and Cook correlated energy consumption with Gross National Product (GNP) and population. Considerable detail on the structure of energy use was presented in Morrison and Readling's report (13) on their energy model of the United States. Ritchings (14) and Cook (15) presented data on the portions of energy used in the residential, commercial, industrial, transportation and power production sectors.

In their study Meadows, et al. (8) concluded: 1) If the present growth trends in the world population, industrialization, pollution, food production, and resource depletion continue unchanged, the limits to growth in the world will be reached sometime within the next one hundred years, 2) It is possible to alter these growth trends to establish a condition of ecological and economic stability that is sustainable far into the future, 3) If the world's people decide to strive for this second outcome rather than the first, the sooner they begin working to attain it, the greater will be their chances of success. For example, by examining the various aspects of the energy dilemma, the required technology can be developed to meet the societal objectives.

Man's attempt to improve his living and working conditions requires the expenditure of power. Only three forms of energy are potentially available which could eliminate or significantly reduce the adverse effect on the environment. These are: 1) solar energy, 2) geothermal energy, 3) fusion power. Of these, solar energy utilization is in its infancy; geothermal energy availability is limited; and fusion power is in its research stage.

Altman, et al. (9) argued that the development of solar and possibly

fusion energies were a must. Statistics indicate that the United States, with less than seven percent of the world's population, uses roughly 45 percent of the world's resources. A slightly larger ratio applies to the use of nuclear and fossil fuels. If the rest of the world wanted to achieve the United States' rate of energy consumption, this would, according to Altman et al, require an eight-fold increase of the present rate of energy resource production in the world. This would not only be difficult to achieve, but would lead to rapid exhaustion of many of the new commonly-used energy resources. They divided the total energy problem into four main categories: 1) energy needs for propulsion, 2) energy needs for environmental control, 3) energy needs for process heat, 4) energy needs in the form of electric power. They discussed these categories from the points of view of the distant future and the near future.

Landsberg and Schurr (16) reviewed all available energy sources, and reached the conclusion that solar energy was the most desirable form of energy in the long run. Because: 1) its use does not disturb the earth's radioactive equilibrium, 2) its use results in essentially no pollution of any kind, 3) it is an energy source for which one does not have to compete.

Fusion energy appeared next on their list as far as desirability was concerned. They pointed out that it would have the following drawbacks as compared to solar energy: 1) it would produce large amounts of power which would then have to be distributed over a long distance, 2) it could disturb the earth's radioactive balance.

They argued that nuclear fission energy was rather undesirable. It

may be needed as a transition system, but in the long run it would suffer from the following disadvantages: 1) safety problems concerning the plants, the shipping and processing of radioactive materials and final disposal, 2) very limited efficiency leading to thermal pollution, 3) psychological resistance based on past failures of fail-safe systems, 4) extreme vulnerability in times of war.

Therefore, Landsberg and Schurr concluded that fossil fueled power plants may yet turn out to be sensible choices particularly if the following developments take place: 1) coal gasification, 2) development of high efficiency turbines, 3) development of waste heat utilization.

B. Energy Forecasts

The prediction of the details for future energy consumption is a difficult process because of the multitude of factors influencing this consumption. Indeed, the measurement uncertainties, the random nature, and the increasing interactions of these factors make energy forecasting an inexact science.

During the past few years numerous forecasts have been undertaken by various organization. Each of these forecasts has its individual characteristics and its own rationale. Some of these forecasts are reviewed in the following pages.

In 1972, a study was done by the Department of the Interior (17) which represented a far-sighted approach based on primarily historical growth patterns. Its purpose was to assess the present energy demand and to forecast the future demand as accurately as possible. It relied heavily on the use of oil and gas to meet the nation's future energy

needs. It predicted that 37 percent of the nation's energy will come from petroleum in the year 2000. Of this, only 29.7 percent will come from domestic supplies. The remainder will be required to come from supplemental supplies such as imports or increased production from new reserve discoveries. In addition, it also predicted that 18 percent of the nation's energy for the year 2000 will come from gas. Of this, 28 percent was expected to come from imports.

In the same year, the National Petroleum Council (18) attempted to present a comprehensive look at the U. S. energy outlook for the next 10-15 years. The conclusions in this study were based on supply and demand balances derived from four supply cases and an intermediate demand projection. It assessed the financial requirements implicit in its domestic supply projections and also assessed the balance of trade implications of import projections. The study showed that a very broad range of outcomes in the energy future was possible.

In 1974, the Ford Foundation's study (19) presented three alternative futures based on different assumptions about energy growth patterns. The first future was the "historical growth" scenario which assumed that the use of energy will continue to grow much as it has in the past. The second was a "technical fix" scenario, which maintained the same growth in energy services, but stressed national effort to reduce growth in energy use through improved efficiency. The third was the "zero energy growth" scenario which would require changes in both lifestyles and the economy to reach a steady no-growth state in energy consumption by the late 1980's. Each of these scenarios was further generalized by considering alternative

mixes of resources to achieve these futures.

Also in 1974, a study called Megastar (20) was produced. The purpose of this study was to provide a methodology for assessing alternate energy futures and to apply that methodology to the critical evaluation of three previously proposed energy scenarios. These were Westinghouse's Nuclear Electric Economy scenario and the Ford Foundation's technical fix scenario, and a Megastar generated alternative scenario to the Ford technical fix scenario. These three scenarios represented different paths of energy consumption from the present to the year 2000. The objective of this study was to analyze the requirements necessary to realize each of these scenarios and the impacts of those requirements on the society. The study suggested that the decision-makers and the society should have the greatest possible awareness of the implications of alternative policies before decisions were made.

The Project Independence Report (21) was prepared by the Federal Energy Administration (FEA) in 1974. It was initiated to evaluate the United States' energy problems and to provide a framework for developing a national energy policy. However, the study did not recommend specific policy actions. While the Ford Foundation report based its analysis upon three different energy demand scenarios, the FEA report based its analysis primarily on varying assumptions for the price of crude oil. It analyzed various strategies for energy policy based on a world crude oil price of four dollars per barrel, seven dollars per barrel, and the present price of eleven dollars per barrel. The report examined a base case labeled "business as usual" and three alternatives: 1) accelerated development,

2) an effort focusing on conservation and "demand management", and 3) an emergency program whose main elements would be a national stockpiling effort, standby conservation measures, and cooperation among consuming nations. This analysis weighted the nation's domestic energy policy alternatives, not only in terms of their vulnerability to support disruptions, but many other important factors, such as economic and social impacts, environmental effects, and regional differences.

In this thesis, the entire energy field is covered, with special emphasis on electric power. The sources of energy, projected energy supply and demand to the year 2000 on the basis of statistical data are reviewed and a survey of U. S. energy forecasts are made in order to make a comparison between the projections. Some energy-related issues are discussed in light of the projections.

Furthermore, a new approach to optimize energy costs for the utilities and consequently for the consumer is introduced. In order to achieve this, a computerized electric energy cost model has been built for the electric generation by optimum allocation of various fuel-mixes over a period of n years, where the energy is subject to a large number of physical and environmental constraints.

III. ENERGY DEMAND PROBLEM

A. The Role of Energy

The pattern of energy consumption in industrialized societies differs substantially from that in nonindustrialized societies. Nonindustrialized societies still are heavily dependent on the traditional energy sources of antiquity-local solar energy that is made available through the agencies of food, work animal feed, fuel wood, fuel dung, agricultural wastes, windpower, and direct waterpower. Field work is largely accomplished by the power of human and animal muscles, and its energy sources are food and animal feed. Per capita consumption of energy is very small - only a few times the food energy required to sustain life. In contrast, industrialized societies consume large quantities of fossil fuel and electricity, the fuel consisting of coal, oil, and natural gas, and the electricity generated partly from fuel and partly from falling water. Fossil fuels, and to a lesser extent electricity, are shipped long distances from their points of origin to their points of consumption. Per capita consumption of energy is as much as a hundred times that contained in food.

The industrial revolution was man's first significant step toward an energy intensive society. Since then, man has become increasingly dependent on machines to produce goods and services, thereby obtaining a greater yield than would be possible by muscle power alone. But this machinery requires energy, and the level of production of goods and services is more or less proportional to the energy input. In 1970, in the U. S., the social and industrial machinery, which produced 974 billion

dollars worth of goods and services, was fueled by some 68.8 quadrillion¹ Btu of energy, nearly all of which was produced from fossil fuel (7).

The efficiency of energy use in producing goods and services depends on the kinds of goods and services produced and the technical efficiency of the industrial machinery. It is unquestionably desirable to increase the technical efficiency of our energy conversion devices, since the same useful products could therby be made available with less fuel. This can only be done through further technological advances. It is interesting to note that the average heat rate of electric power plants in the U.S. in 1920 was 37,200 Btu/kwh (22), but in 1970 it was about 10,900 Btu/kwh (23). The technical efficiency of the total U. S. energy system, from potential energy at points of initial conversion to work at points of application, is about 50 percent. The economic efficiency of the system is considerably less. This is true because work is expended in extracting, refining and transporting fuels, in construction and operation of conversion facilities, power equipment and electricity-distributed networks, and in handling waste products and protecting the environment (7-27). The technical efficiency of energy utilization will continue to change with technological innovation, and the kinds of goods and services that people want will change with time. In forecasting, one attempts to anticipate these changes in a quantitative way. Any technological change must be preceded by research, development, and field application of new concepts. In the energy field, each stage requires a huge investment in technical manpower and capital. Energy research must compete for funding with other

¹One quadrillion = 10^{15} in this study, as is common in U. S. usage.

projects of high national priority - and the needs are usually greater than the resources. Technical manpower also is limited, since knowledge and expertise in any new field are limited. These human and monetary restrictions generally delay major technological changes in the energy field. Furthermore, even after the R & D stage and the production of a successful prototype, more time passes before a new process can be integrated with the existing social structure. Consequently, it takes much time, perhaps decades, for a society to implement major technological changes in the energy field (7). Development of nuclear technology can be mentioned as an example.

A measure of a nation's production of goods and services is its gross national product (GNP). Figure 3.1 shows the relationship between GNP per capita and energy consumption per capita for a number of countries in 1968 (28). As one might expect, there is a strong general correlation between energy consumption and GNP, but it is far from being a one-to-one correlation. Some countries have a high level of energy consumption with respect to GNP; other countries have high output with relatively less energy consumption. Such differences reflect contrasting combinations of energy-intensive heavy industry and light consumer-oriented and service industries (characteristic of different stages of economic development), as well as differences in the efficiency of energy use.

B. Energy Consumption Growth

The annual consumption of all forms of energy in Ae U. S. has increased seventeenfold in the past century, with a corresponding population

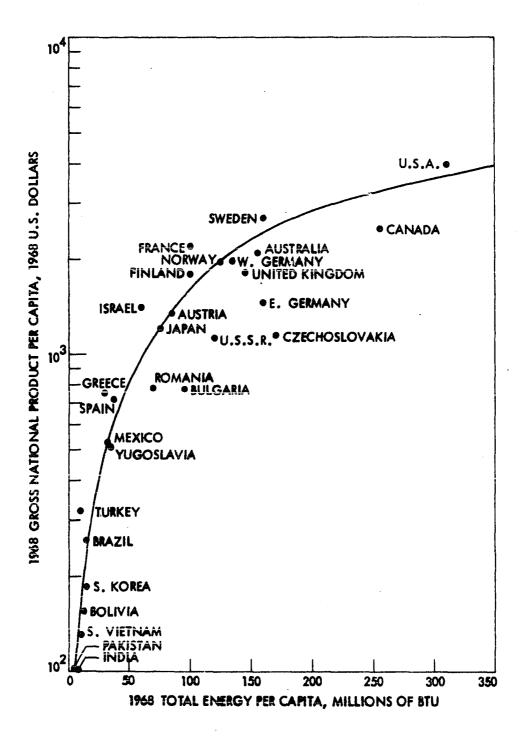


Figure 3.1. Total energy consumption per capita versus GNP for various countries in the world in 1968 (28)

increase of little more than fivefold. Figure 3.2 shows this trend, using statistics from the U. S. Bureau of Mines (11). The growth rate of total energy consumption since 1850 has been 2.8 percent. The great depression of the 1930's had a retarding effect on the growth. The growth rate from 1960 to 1970 was about 4.8 percent per year. The total energy consumption during the period from 1850 to 1970 was approximately 2.34 Q, where one Q is equal to 10^{18} Btu. Fuel wood was the dominant energy source in 1850. By 1910 coal accounted for about 75 percent of the total energy consumption and fuel wood accounted for only some 10 percent. In the 50 years between 1910 and 1960, coal lost its leading position to natural gas and oil. Today, nuclear power is emerging as a national energy source.

Until roughly the beginning of the twentleth century, all energy production involved combustion of fuel at the point of energy use. However, a new industry was born when the first electric power station, Pearl Street Electric Station in New York City, went into operation in 1882. The electric utility industry grew rapidly, at first primarily to meet illumination requirements, but later to provide for many other uses. The history of electric energy sales in the U. S. is shown in Figure 3.3, which shows a growth rate of about 7.53 percent per year. By 1920, the production of electricity accounted for about 11.5 percent of the annual energy demand. The portion of total energy consumption used in electric power production continued to rise, as shown in Figure 3.4, and today's power plant use is about 25 percent of the national energy consumption.

Part of the tremendous increase in energy consumption since 1850 is

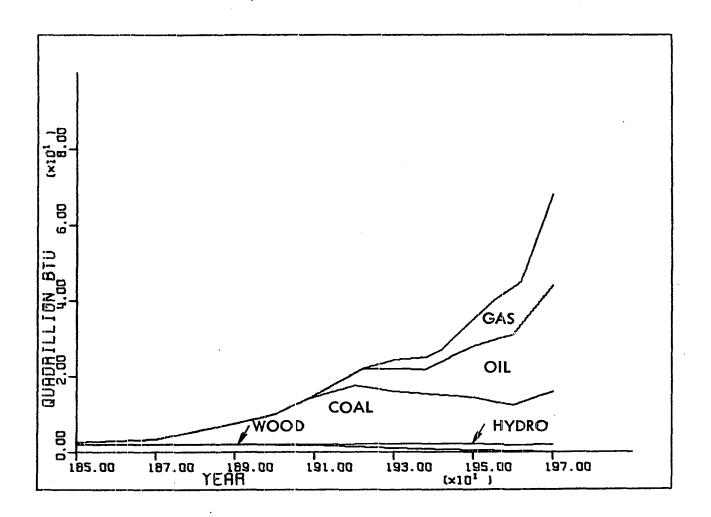


Figure 3.2. Historical total energy consumption in the U.S. (11)

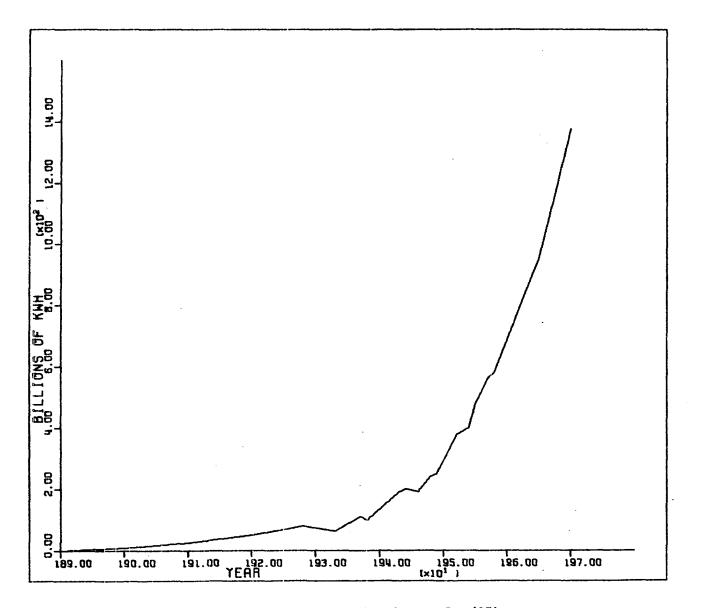


Figure 3.3. Historical electric energy consumption in the U. S. (35)

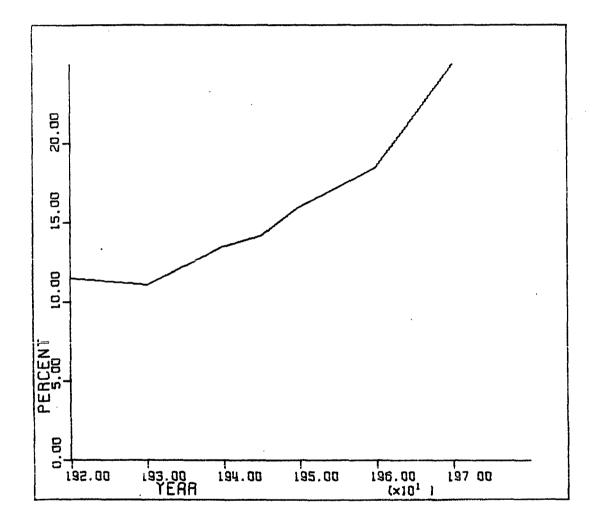


Figure 3.4. Historical total energy converted to electricity in the U. S. in percent

at least partially attributable to population growth. The U. S. population increased exponentially from about 23 million in 1850 to about 208 million in 1970, which is equivalent to approximately 1.74 percent per year. The growth in total energy consumption was even faster. Consequently, the per capita consumption of energy also increased substantially during this period. Figure 3.5 shows the growth in per capita energy consumption from the period of 1850 to 1970, which was necessary to sustain a similar increase in the average living standard. Growth in per capita energy consumption was equivalent to about 1.03 percent per year during this period. However, there was virtually no growth at all in the per capita use of energy during the three decades from 1850 to 1880. The effective growth rate from 1880 to 1970 was about 1.21 percent per year, and the growth rate during the last two decades, 1950 to 1970, has been about 2.29 percent per year.

C. Energy Consumption

An examination of the amount of energy utilized by various sectors of the U. S. economy reveals that much of the recent increase is due to increased utilization by the household, commercial and transportation sectors, rather than by the industrial ones. In 1970, almost 10 percent of the country's useful work was done by electricity. Figure 3.6 indicates the role of the electric utility industry in supplying the nation's energy needs. The numerical values shown in this figure are based on information from several sources (22, 23, 29, 30, 31).

All energy conversion produces unrecoverable waste heat. This heat

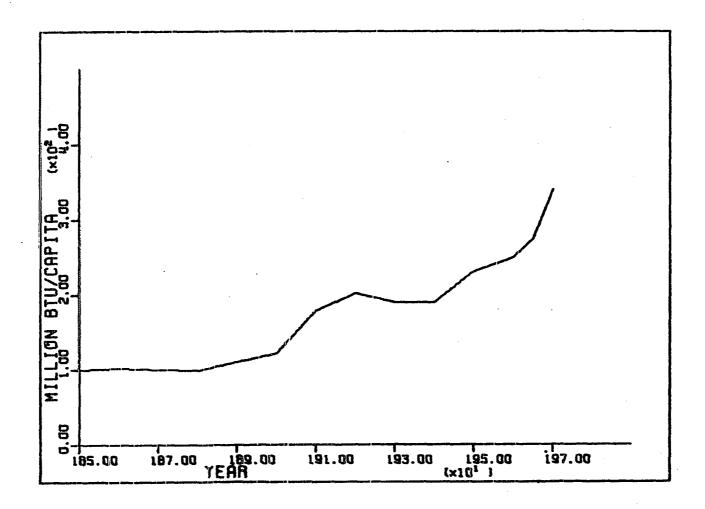
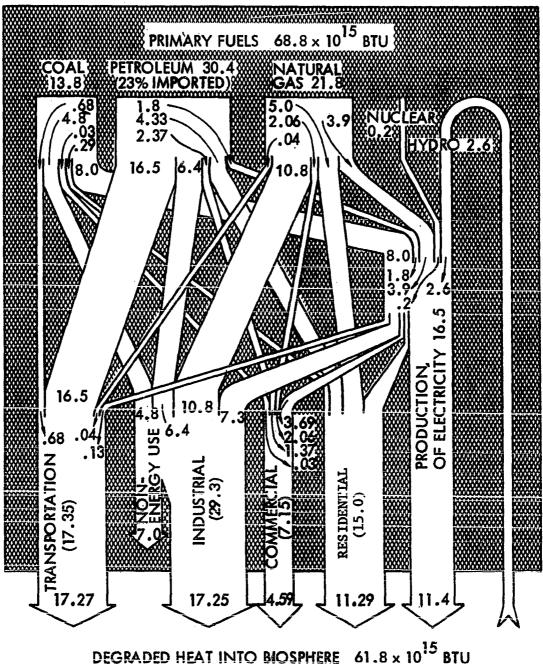



Figure 3.5. Historical energy consumption per capita in the U.S. (30)

ALL QUANTITIES ARE IN UNITS OF 1015 BTU

Figure 3.6. Energy consumption in the U.S., 1970

ultimately radiates to space. The worldwide man-made thermal load, however, is so small compared with the solar heat load as to be insignificant on a global scale. In the year 2000 the worldwide use of energy will still be much less than a thousandth of the sun's heat input to the earth. Nevertheless, one can expect that the concentrated generation and consumption of energy in densely populated areas will be capable of affecting both the local climate and ecological systems. According to Starr, the only practical solution may be to limit the population density of our major cities (11).

The top of Figure 3.6 shows the primary energy sources, and the bottom of the figure shows user categories. The electric power industry used about 24 percent of the primary energy, 31 percent of that in producing electrical energy, and in the process losing 69 percent of it as waste heat. The waste heat was rejected at the power plant, and not shipped to the user location, as in the case of the other three quarters of the primary fuel (23).

Horizontal dimensions in Figure 3.6 are approximately proportional to the quantity of energy in 10¹⁵ Btu. Petroleum and natural gas are the dominant fuels, supplying over 75 percent of the primary energy required for the nation. Coal represents a smaller proportion of the supply, about 20 percent, and the rest is primarily hydro and nuclear energy. Small and insignificant sources are ignored for simplicity. About 23 percent of the oil requirement was provided by imports (29, 31).

The four ultimate user sectors are dimensioned to reflect the quantity of energy they consume, including their share of the waste heat produced

at the electric power plants. This total consumption is divided into primary fuel consumed and electricity used. The industrial sector generally accounts for the greatest share of energy use, about 43 percent; the transportation sector uses somewhat less, 25 percent; and the residential sector is still less, 22 percent. The commercial sector uses the least, accounting for about 10 percent of all energy consumption (29).

All energy conversions are more or less inefficient, of course, as the figure clearly indicates. In the case of electricity, there are losses at the power plant, in transmission and at the point of application of the power; in the case of fuels consumed in end uses, the loss comes at the point of use. The waste heat produced at electric power plants, 11.4×10^{15} Btu, does, of course, enter the biosphere. Nearly all of the electric energy that is carried to various points of use, degrades to heat. Other fuels consumed in the user sectors degrade to heat, except for a portion of fossil fuel used for nonenergy purposes, which amounts to nearly one-third of the primary energy used in the industrial sector. Thus, the energy associated with these industrial raw materials, equivalent to about 7.0 $\times 10^{15}$ Btu in 1970, does not become degraded heat in the environment. In this category are such items as lubricating oil, asphalt for road surfaces, chemical feedstock, etc. (22, 28).

Of all the energy fuels used in 1970, only hydropower contributes no net heat to the biosphere. The reason for this is that hydropower begins as solar energy and is converted to hydraulic energy in the water cycle. It would degrade to heat whether or not part of it became electricity in the process.

Fossil fuels, of course, also represent stored energy from the sun,

but the storage process has occurred slowly over millions of years. The rate of release of this stored energy is so rapid when it is burned that it amounts to a large net input of heat into the biosphere. For this reason, approximately 59.2×10^{15} Btu of heat were added to the biosphere through human energy processing in the United States in 1970. Figure 3.6 is a useful reference, and offers a quantitative description of the entire energy system in the United States today. It also puts various fuels and consuming sectors in their proper perspective.

D. U. S. and World Population Growth

The birthrate in the U. S. is declining. The historical low, recorded during the 1930's, was 18.4 births per 1000, while at the peak of the baby boom in 1957 the rate was 25.3 births per 1000. In 1974, it stood at only about 14.8, the lowest in U. S. history (32, 33). The birthrate was 17.7 per thousand people in 1969, while the death rate was 9.5 per thousand. Thus, although the birthrate has declined steadily since the mid 1950's, as shown in Figure 3.7, it is still considerably greater than the death rate (34).

Another indicator, the total fertility rate, has also reached a historical low. This is the sum of the rates at which women, taken in groups of 1000 at each of the reproductive ages, bear children in any particular year. In 1974, the rate was decreasing and was down to nearly 1,800. This figure implies that if all women born in a given year were to bear children at that rate over their entire reproductive lives, they would eventually bear an average of 1.8 children each.

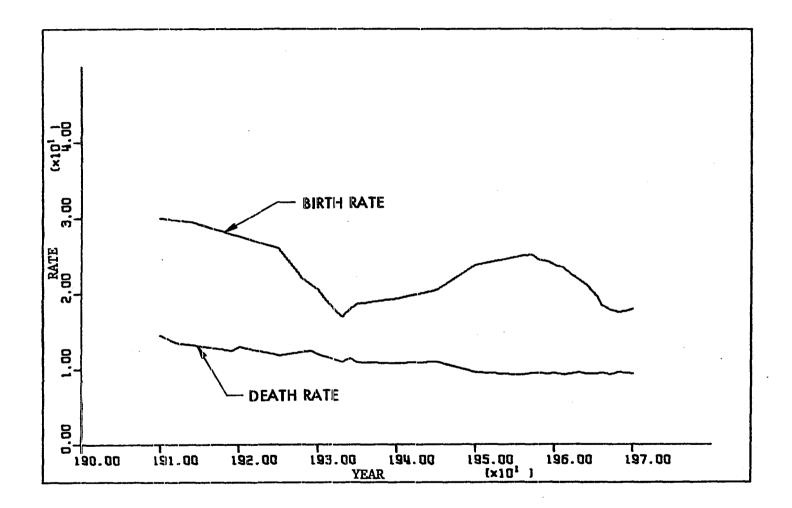


Figure 3.7. Historical birth rates and death rates in the U. S. (34)

The present low total fertility rate is of special interest because it is in the range that, if continued over the long run, would stop U. S. population growth or cause it to decline. A group rate of 2.1 children per woman is equal to the U. S. replacement rate. That rate would produce a stationary population - that is, zero population growth (ZPG) in about sixty years or so, if the same level of fertility were to continue in the future (32, 33, 34).

The demographers use "demographic transition" theory to explain what happens to population growth as tradition-bound societies become modern-In the first stage, according to this theory, improved publicized. health practices and better nutrition enable people to live longer, causing death rates to decline sharply. But, birthrates remain high, and hence, the population grows rapidly. In the next stage, the society becomes more urban and better educated. This tends to keep children out of the work force longer, thus they become more of a cost to the parents than a source of income. Moreover, as modernization continues, people are able to save more money to provide for the needs of their old age, and governments may even start public pension systems. These developments reduce the need for parents to rely on children for financial support in later life. Because of these factors, femilies have fewer children. Unfortunately, the theory is vague about what happens when a demographic transition is completed. Demographers do agree, however, that a low birthrate is characteristic of the final stage of the transition. In that sense, the U.S. and at least nineteen other developed countries with low fertility rates may be nearing the end of their transitions (34).

There is a striking difference between U. S. and world population growth, which are shown in Tables 3.1, 3.2, and Figure 3.8 and 3.9. The rate of population growth in the U. S. has been decreasing during the last century, whereas the world population growth rate has been increasing. In general, the industrialized countries of the world have had lower population growth rates than the less-developed countries in recent years, as is shown in Table 3.2 (35). It is apparent that the present rate of world population growth cannot be sustained indefinitely. According to Starr, environmental or other restrictions will sooner or later cause the death rate to increase substantially, and the least developed countries will be the first to suffer (11).

Year	Population (Millions)	
10,000 B.	C. $1 \pm x 10$	_
1 A.:	D. 275 ± 80	
225	290 Max.	
700	270 Min	
1000	295	
1200	310	
1400	350	
1650	493	
1750	694	
1800	887	
1850	1,170	
1890	1,500	
1900	1,550	

Table 3.1. World population estimates (35)

Table 3.1. Continued.

Year	Population (Millions)	
1925	1,907	
1950	2,497	
1960	2,996	
1965	3,297	
1970	3,655	
1975	4,080	
1980	4,562	
1985	5 ,0 96	
1990	5,687	
1995	6,278	
2000	6,919	

Table 3.2 shows some population and economic data for 31 countries of the world. The countries are listed in ascending order of GNP per capita. The table reveals that the GNP of the entire world is 2.88 times that of the U.S. In other words, the U.S. generates 35 percent of all the goods, wealth, and services generated in the world per year.

By an Act of Congress in March, 1970, the U. S. Commission on Fopulation Growth and the American Future was established. It was charged with the responsibility of sponsoring studies of the broad range of problems associated with population growth and their implications for America's future. In the commission's report (33), it was concluded that 1) No substantial benefit will accrue from the continued growth of the U. S. population, 2) A reduction in the growth rate will create

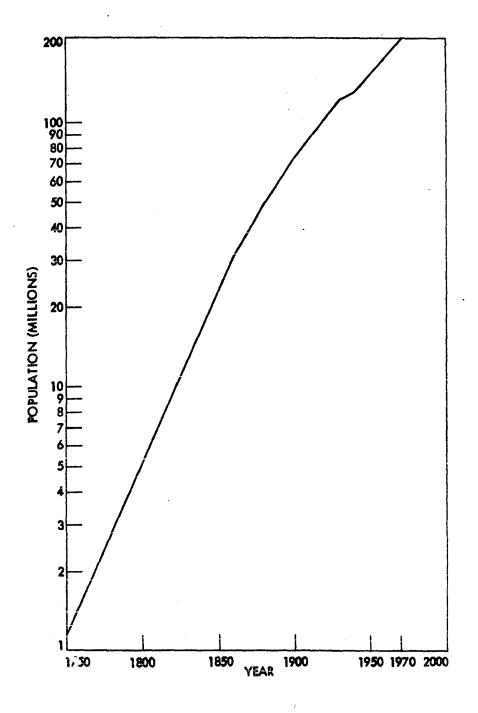


Figure 3.8. Historical population growth in the U.S. (35)

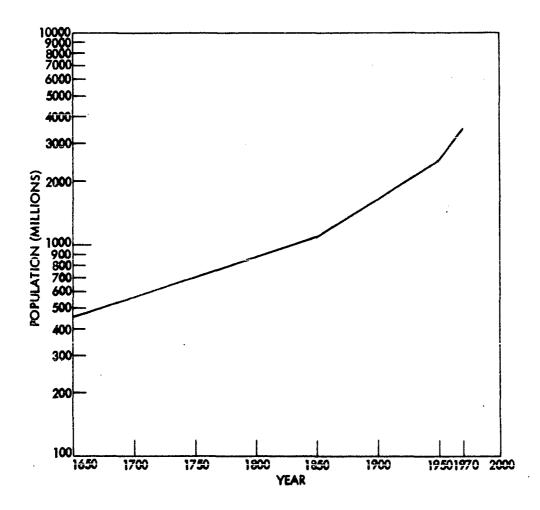


Figure 3.9. Historical world population (See Table 3.1)

	GNP per	Population	Birth Rate	Death Rate	Population	Number of Year:
Countries	Capita (US\$)	(10 ⁶)	per 1000 People	per 1000 People	Growth Rate	to Double Population
Southwest Africa	.	0.6	44	25	2.0	35
Ethiopia	70	25.6	46	25	2.1	-
China	9 0	772.9	33	15	1.8	39
North Vietnam	90	21.6		-	2.1	· 3 3
India	1.00	569.5	42	17	2.6	27
Pakistan	100	141.6	50	18	3.3	21
South Vietnam	130	18.3	-	-	2.1	33
Syria	210	6.4	47	15	3.3	21
Brazil	210	95.7	38	10	2.8	25
Iran	310	29.2	48	18	3.0	24
Turkey	310	36.5	43	16	2.7	26
Colombia	310	22.1	44	11	3.4	21
Cuba	310	8.6	27	8	1.9	37
Portugal	460	9.6	19.8	10.6	0.7	100
Greece	740	9	17.4	8.2	0.8	88
Poland	880	33.3	16.3	8.1	0.9	70
Libya	1020	1.9	46	16	3.1	23
USSR	1110	2.45	17.0	8.1	1.0	70
Japan	1190	104.7	18.0	7.0	1.1	63
Italy	1230	54.1	17.6	10.1	0.8	88

Table 3.2. World population data, 1971 (In descending order of GNP per capita) (30)

Countries	GNP per Capita (US\$)	Population (10 ⁶)	Birth Rate per 1000 People	Death Rate per 1000 People	Population Growth Rate	Number of Years to Double Population
Israel	1360	3.0	26	7	2.4	29
East Germany	1430	16.2	14.0	14.3	0.1	233
Netherlands	1620	13.1	19.2	8.4	1.1	63
Finland	1720	4.7	14.5	9.8	0.4	175
United Kingdom	1790	56.3	16.6	11.9	0.5	140
West Germany	1970	58.9	15.0	12.0	0.4	117
Norway	2000	3.9	17.6	9.9	0.9	78
Canada	2460	21.8	17.6	7.3	1.7	41
Sweden	3.540	0.8	43.0	7.0	8.2	9
Kuwait	3540	0.8	43.0	7.0	8.2	99
United States	3980	207.1	18.2	9.3	1.1	58

Cumulative World GNP (1968) = $$2.304 \times 10^{12} = 2.88 \times (U. S. GNP)$.

Number Average National GNP = \$1206.

Number Average GNP per capita = \$660.

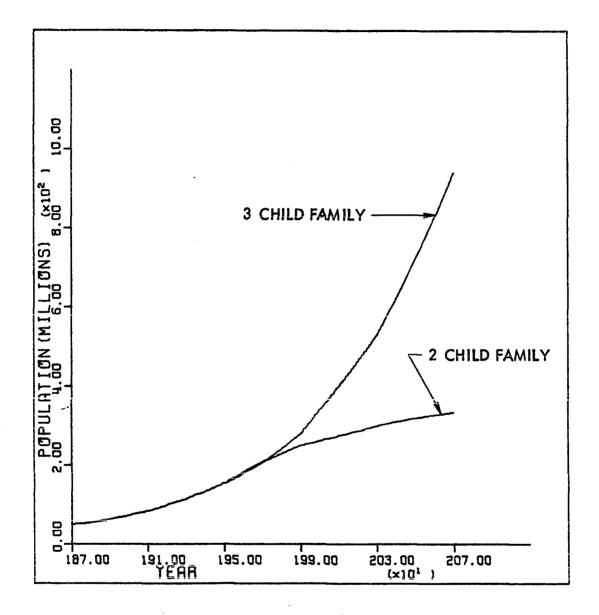


Figure 3.10. U. S. population growth, 2 versus 3 child families (33)

important economic benefits, especially if the nation develops policies to take advantage of the opportunities for social and economical improvement that slower population growth would provide, 3) Population growth is one of the major factors increasing the demand for resources and the resulting detrimental impact on the environment, 4) An average of two children per family will result in zero population growth in the long run.

The Commission's report includes a graph (Figure 3.10) showing the projected future U. S. population assuming the average family has two children rather than three, beginning in 1970. The U. S. population would stabilize in 60 to 70 years if the birthrate were held at about 2.11 children per woman.

It is, of course, very unlikely that the birthrate will stay extremely close to the replacement level for 60 years; it is more likely to fluctuate. But, the goal of zero population growth has been established, and the birthrate has declined to the replacement rate in recent years. The most reasonable and meaningful forecast of U. S. population growth through the next century should be based on a gradually declining growth rate which generates a Gompertz curve (See Appendix B). The growth rates shown in Table 3.3 generate such a curve. Table 3.4 indicates U. S. population as

Period		ulation Growth Rate er year)
1950-1960	1.57	Historical
1960-1970	1.31	11
1970-1980	1.22	Projected

Table 3.3. Projected U. S. population growth rates

Table 3.3. Continued.

Period	Approximate Population Growth RatePeriod(% per year)			
1980-1990	1.01	Projected		
1990-2000	0.73	11,		
2000-2015	0.68	11		
2015-2030	0.54	11		
2030-2050	0.23	99		
2050-2070	0.15	. 11		
2070-2100	0.00	11		

projected using the growth rates in Table 3.3. As can be seen from Table 3.4, U. S. population will reach 279 million by the year 2000, 309 million by the year 2015, 335 million by the year 2030, and 361 million by the year 2070. This projection of the U. S. population, based on what the Commission sees as a desirable and achievable goal, is used in the following pages as part of the basis for an energy forecast.

Table 3.4.	Projected U	J. S.	population	using	growth	rates	in	Table 3	1.3
------------	-------------	-------	------------	-------	--------	-------	----	---------	-----

Year	Population (10 ⁶)	Year	Population (10 ⁶)	
1950	152.271 ^a	2030	335.110	
1955	165.931 ^a	2035	338.982	
1960	180.684 ^a	2040	342.898	
1965	194.592 ^a	2045	346.859	
1970	208.020 ^a	2050	350.867	
1975	221.001	2055	353.506	
1980	234.815	2060	356.165	

^aHistorical values.

Table 3.4. Continued.

Year	Population (10 ⁶)	Year	Population (10 ⁶)	
 1985	246.915	2065	358.850	
1990	259.638	2070	361.544	,
1995	269.254	2075	361.544	
2000	279.226	2080	361.544	
2005	288.850	2085	361.544	
2010	298.805	2090	361.544	
2015	309.104	2095	361.544	
2020	317.540	2100	361.544	
2025	326.207			

E. Energy Forecasts

A forecast is not the same as a prediction. A prediction implies supposed knowledge of what will happen at some time in the future. A forecast is much more cautious. It implies that if a variety of conditions that hold today continue to hold in the future (including, for example, structure of demand and rates of growth), or if these conditions change in ways that are specified as part of the forecast, then a certain future situation will be the result. In essence, forecasters report the probable consequences of present assumptions and present trends. In a sense, forecasts are extensions of the past which are based on certain assumptions. But, if the assumptions are incorrect, so will the resulting forecasts be. Therefore, it is necessary to choose assumptions carefully, bearing in mind that they are the basis for the forecasts. Since judgement plays a part in long range forecasting, it is fruitful to examine forecasts in the same discipline that have been made by others. In the energy field, many forecasts have been prepared in recent years. An extensive tabulation of these appears in the following pages.

GNP and energy consumption in the U.S. have increased at about the same rate for many years. For this reason, many energy forecasts have been based on the assumption that this relationship will persist. From 1920 to 1970, the U.S. real GNP, in 1958 dollars, increased from 140 billion to 720 billion dollars, equivalent to about 3.35 percent growth annually. During the same period, energy use grew from 20 x 10¹⁵ Btu to 68.8 x 10¹⁵ Btu, equivalent to 2.53 percent annual growth. Thus, the ratio of energy use to real GNP declined over this 50 year period, as shown in Figure 3.11 (29, 36). However, since 1966, the energy/GNP ratio has been climbing. Whether this reflects a changing ratio of services to material goods in the GNP, or a reduction in the efficiency of energy use in the production of goods, is not yet clear. At any rate, the historical decline in the energy/GNP ratio will not necessarily In fact, environmental cleanup is likely to consume tremendous continue. amounts of energy in the future, yet it will contribute little to the GNP, at least as the GNP has historically been measured (37). Thus, many of the earlier energy forecasts, which are based on continued growth of GNP and a declining energy/GNP ratio, probably predict energy levels in the year 2000 which are too low.

Any attempt to forecast the future growth of energy use requires a

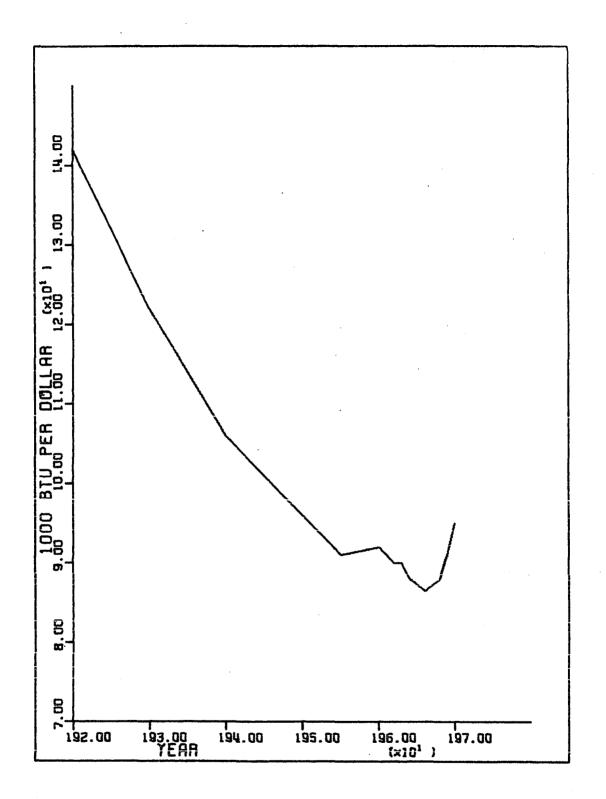


Figure 3.11. Historical energy/GNP ratio in the U. S. (28)

thorough analysis of the forces which might possibly sustain the historical trend or cause it to increase, and of those forces which might retard or limit it. However, in attempting to forecast energy growth for three decades into the future, it is important to consider the past three decades as providing the most relevant portion of historical data. If conditions during the next three decades were the same as during the last three decades, the energy growth rate would be the same. Since this obviously will not be the case, the probable differences must be examined. However, the extrapolation of a historical trend can be a valid forecast in itself, although perhaps a crude one (38). This initial forecast can be improved through qualitative examination of possible accelerating and retarding forces. One of the factors which tends to cause the energy use growth trend to continue is the expectation of continued population growth through the year 2000. As can be seen in Figure 3.10, the population growth rate will not fall off significantly until about the year 2000, even if the birthrate remains at the replacement level. But, population growth has only been about 1.2 percent per year, while energy growth rate was about 3.4 percent during the period from 1940 through 1970, and has been even higher in the last few years. Thus, population growth, in itself, is insufficient to maintain this historical trend in energy use growth.

Many forecasts predict growth in real GNP at an annual rate of 3.5 to 4 percent through the year 2000 (39, 40). While it is difficult to defend this projection scientifically, it is likely that people, government officials, and industrialists will strive hard to achieve it. Thus,

it is reasonable to expect the GNP to increase during the next three decades more or less as it did in the past three, 4.2 percent annually from 1938 through 1970. However, the historical reduction in the energy/GNP ratio will probably not continue. At present, the most reasonable expectation may be that this ratio will level out over the next 30 years (41), whereupon, energy growth would proceed at about the same rate as the GNP.

Energy will gradually become more expensive in the future, which is a reversal of the historical trend. This will occur primarily for two reasons: the cost of fuel production and the cost of environmental protection (43). The price of fuel is increasing because the most accessible reserves have been depleted, as they were extracted first. Environmental protection, a relatively new aspect of the energy field, is increasing the cost of energy because it requires the use of cleaner, more expensive If the energy industry uses the more abundant but dirty fuels, it fuels. will incur major capital expenses and operating penalties. There is no major technical difficulty in meeting environmental standards in the next three decades, although short-term schedules for air and water pollution control may be unrealistic (44). However, environmental protection will significantly raise the cost of energy (37). Within the bounds of the elasticity of energy demand, higher prices may discourage some of the growth in energy use. Higher cost should also provide an impetus to increase the efficiency of energy conversion and energy use (45).

In summary, the factors affecting future energy growth are popula-

tion growth, GNP growth, technological developments and environmental energy requirements on one hand, and expected higher energy prices on the other. Considering these qualitative factors and the historical trends in energy consumption and economic growth, it appears that an annual energy growth rate of 3.5 - 4 percent is most likely and quite reasonable for the period from 1970 to 2000 (46). This conclusion differs little from the energy forecasts of others, as shown in Tables 3.5 and 3.6. Table 3.5 shows, in 10⁶ Btu, various forecasts of total energy consumption per capita for the U.S., while Table 3.6 shows, in 10¹⁵ Btu, total energy consumption forecasts for the U.S. Forecasts, in MBtu of upper and lower limits and means for total energy consumption per capita for the U.S. are calculated and shown in Table 3.7. Several forecasts indicate significantly slower future growth, but they were prepared before the upturn in the energy/GNP ratio became apparent in the mid-1960's. Other forecasts are rather similar, while some predict an even higher future energy growth rate. The forecasts for the year 2000 range from 105×10^{15} to 337×10^{15} Btu. Based on consumption of 68.8×10^{15} Btu in 1970, this represents a range of 3.0 to 4.0 percent in the effective annual growth rate. Figure 3.12 shows the historical growth of energy use in the U.S. and the preferred "average" forecast to the year 2000, in addition to the ranges of most other forecasts. This forecast has a 3.5 percent compound growth rate.

As shown in Figures 3.3 and 3.4, electricity consumption has grown significantly faster than total energy consumption, accounting for 25 percent of total energy use in 1970. Table 3.8 shows, in percent, forecasts of total energy converted to electricity in the U. S., from

10.0-	EAE	USEP	USE	EUR	ETTY
lear	Ref. (22)	Ref. (145)	Ref. (147)	Ref. (150)	Ref. (150)
.850	102	-	-	-	-
1855	103	-	-	-	-
1860	101	-	-	-	-
1865	96	-	- .	-	-
1870	99	-	*	-	-
1875	97	-		-	-
1880	100	-	-	-	-
1885	99	-	-	-	-
1890	111	-	-	6	8 7
1895	111	-	-	-	-
1900	126	100	-	-	-
1905	158	136	-	-	-
1910	179	160	-	•	-
1915	177	160	-	-	-
1920	201	186	-	186	-
1925	193	180	-	-	-
1930	192	181	-	181	-
1935	161	15 Ô	-	-	-
1940	190	180	-	180	-
1945	233	225	-		-
1950	231	224	225	224	223
1955	246	240	-	242	239
1960	-	248	250	250	246
1965	-	<u>277</u>	-	279	274
1970	-	-	337	335	329
1975	-	-	412	-	371
1980	-	-	-	-	419
1985	-	-	563	43	479
1990	-	-	-	-	-
1995	=	-	-	-	-
2000	-	-	720	-	686

Table 3.5. Forecasts of total energy consumption per capita for the U.S. in MBtu

CGAE	EUS	FFF	PCCP	PEC	TCUS
Ref. (61)	Ref. (61)	Ref. (61)	Ref. (61)	Ref. (61)	Ref. (61)
-	-	-			-
-	-	-	-	-	-
-	-	-		-	-
	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-			-	-
-	· •	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	— *	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-		-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
.	-	-	-	-	268
220	230	0.01	-	278	ين
251 28 4	260	291	288	-	-
320	295 3 3 7	332	336	358	366
357	386			-	
-		-	=	-	-
-		-	-	-	-
	-	439	474	499	524

			•							
Source	Ref. No.	1970	197 5	1980	1985	1990	2000	2020	2050	
Schurr	150		75	-	-	-	-	•	-	
Weeks	150	-	-	92	•••	` _	187	-	1110	
McKinney	150	63	72	-	· •••	-	-	-		
Landsberg	61	60	-	79	-	102	135	-	-	
Sporn	150	-	72	-	-	-	105	-	-	
Sporn	60	69	-	-	116	-	155	-	-	
Sporn	150	-	-	78	-	en	-	=	-	,
Putnam	150	۵	63	88	5	-	148	-	-	
Teitelbaum	150	-	67	80	-	-	-	-	-	
Searl y	150	62	73	86	-	121	170	-	-	
Jones	162	70	86	105	130	-	-	-	-	
Lasky	150	-	-	82	-	-	-	-	-	
Lamb	150	60	68	78	=	=	÷	-	-	
Vogely	61		-	86	-	-	-	-	-	
NAE	41	69	-	102	-	151	223	-	-	
CGAEM	61	64	80	98	120	-	-	-	-	
EUS	61	61	75	93	118	-	-	-	-	
NFES	61	-	-	82	-	-	~	-	-	
RAF	61	60	-	79	-	-	135	-	-	
PEC	61	-	-	86	-	-	-	-	-	
ER	61	-	-	61	-	-	-	-	-	
OEUS	-	-	-	97	-	-	-	-	-	
USP	61	-	-	88	•	. •	-	-	-	
EMUS	61	64	76	8 8	••	-	169		-	
PCCP	61	-	-	91			155	-	4 0	
FFF	61	-	-	86		-	170		-	
TCUSEC	61	-	-	90	-	-	174	-	-	

-

-

103

-

125

168

168

-

-

41

11

18

-

68

-

BOM

NPC

Starr

Table 3.6. Total energy consumption forecasts for the U.S. in 1015 Btu

Source	Ref. No.	1970	1975	1980	1985	1990	2000	2020	2050
White	61	-	-	-	-	-	170	-	-
EBASCO	23	67	-	104	-	-	-	-	-
BATTELLE	61	-	-	-	-	-	170	-	-
AEC	150	-	-	82	-	-	135	207	347
AEC	150	-	-	80	-	-	130	210	-
Vogely	150	-	88	-	-	-	-	-	-
Vogely	163	-	-	84	-	-	159	-	-
E. World	150	-	81	-	-	-	125	-	-
Dole	155	70	12	98	-	130	-	-	-
Ritchings	158	-	80	-	110	-	-	-	-
Nassikas	36	-	95	-	-	140	-	-	-
Laird	36	-	-	-	-	-	-	-	-
Morton	36	69	-	-	133	-	192	-	-
GCG	62	67	-	115	-	195	337	-	-
н. & н.	10	69	-	95 - 105	-	- 1	.77 - 210	-	-
USET	17	-	80	96	117	-	192	-	-
USE	147	69	89	-	133	-	192	-	-
Landsberg	150	-	-	84	-	-	138	-	-
Searle	150 ⁻	-	-	86		-	178	-	-
RFF	150	-	75	-	-	-	~	-	-
EBASCO	150	-	72	-	-	-	-	-	-
RFF	150	-	-	79	-	-	~	-	-
РАР	151	-	-	87	-	-		-	-
SRI	151	-	-	92	-	-	-	-	-
FNCB	151	-	-	87	-	-		-	-
PIR	151	-	-	92	-	-	-	-	-
но	151	-	-	97	-	-	-	-	-
Mills	162	6 6	77	89	-	-	163	-	-
DOI	61	-	-	84	-	-	159	-	-
Shaw	152	-	-	80	_	_	131	_	-

.

Table 3.6. Continued.

Source	Ref. No.	1970	1975	1980	1985	1990	2000	2020	2050
Perry	152	65	-	95	-	125	165	-	-
Nassikas	162	66	-	95	-	140	-	-	-
DOI	150	-	-	73	-	-	123	-	440
DOI	150	-	-	82	-	-	160	-	750
Evans	161	-	-	90	-	120	150		-
Weeks	150	-	-	90	-	-	180	-	-
TE	150	-	-	83		89	***	-	-
McKinney	150	-	-	81	-	-	-	-	-
Schurr	150	-	-	88	-	-	-	-	-
TE	150		-	81	-	-	-	-	-
ANGE :									
		60- 70	63 - 95	61 - 115	110- 133	102 - 195	105 - 337	207 - 210	347 - 1110
ERAGE:									
		65.6	77.2	88.2	122.4	136.0	160.4	208.5	661.8

Table 3.6. Continued.

Year	High	Mean	Low	Comment
 1850	102	102.0	102	Historical
1855	103	103.0	103	11
1860	101	101.0	101	**
1865	96	96.0	96	**
1870	99 .	99.0	99	11
1875	97	97.0	97	11
1880	100	100.0	100	**
1885	99	99.0	99	11
1890	111	111.0	111	"
1895	111	111.0	111	11
1900	126	113.0	100	**
1905	158	147.0	136	**
1910	179	170.0	160	**
1915	177	168.5	160	51
1920	201	191.0	186	**
1925	193	186.5	180	
1930	192	184.6	181	
1935	161	155.5	150	**
1940	190	183.3	180	88
1945	233	229.0	225	**
1950	231	225.4	223	91
1955	246	241.8	239	11
1960	268	252.4	246	11
1965	279	259.7	220	11
1970	337	298.7	251	15
1975	412	340.5	295	Forecasted
1980	419	352.6	320	11

Table 3.7. Upper and lower limits and mean for total energy consumption per capita forecasts for the U. S. in MBtu

Year	High	Mean	Low	Comment
1985	563	446.3	357	Forecasted
1990	-	-	-	11
1995	-	-	-	11
2000	720	557.0	439	11

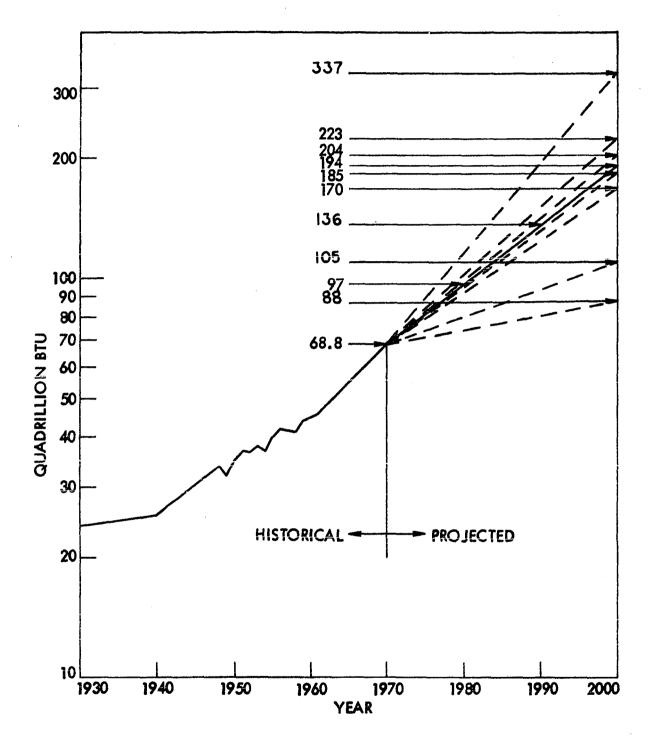


Figure 3.12. Historical and projected energy consumption in the U.S. (See Table 3.6)

Source	Ref. No.	1970	1975	1980	1985	1990	2000
EUS	61				38		
FPC	65	26				41	
WH	31	25		35		50	
USET	17		28	31	35		42
Sporn	60				35		53
GCG	62	24			29		37
EBASCO	23	25		29			
NAE	41	25		33		42	46
Starr	11	25					38
CMB	18	25		33	37		
NPC	23	25		32	36		
ANGE :							
		24-26	28	29 - 35	29 - 38	41-42	38 - 53
EAN:							
	•	25.0	28.0	32.2	35.0	44.3	43.2

Table 3.8. Forecasts of total energy converted to electricity in the U.S. in percent

1970 to the year 2000. The ranges of the forecasts and the "average" forecast are also shown in this table. In order to find the curve best fitted to this "average" forecast, a number of regression models were tested. The polynomial regression model of

$$TFC = b_0 + b_1 y + b_2 y^2 + e$$
 (3.1)

proved to be the best with a correlation coefficient of 0.980 and regression coefficients $b_0 = 123677.685$, $b_1 = -125.807$, and $b_2 = 0.0319$. Use of analysis of variance to test the null hypothesis of

$$H_{0}: b_{j} = b_{j0}$$

$$H_{1}: b_{j} \neq b_{j0}$$
(3.2)

at the 0.05 level of significance, resulted in sound rejection of the hypothesis. Table 3.9 illustrates the analysis of variance. According to this regression analysis, electricity production will account for 39 percent of the total energy use by the year 2000. The results are shown in Tables 3.17 and 3.21.

Table 3.9. Analysig of variance table for the null hypothesis

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	Computed f(2,n-3)	Critical f _{0.05} (2,n-3)
Regression	216 .8 95	2	108.447	49.473	9.55
Error	4.334	2	2.192		•
Total	2ź 1.280	4			

In the past, electric energy and the electric energy industry have grown very rapidly because electric energy was convenient, efficient, clean, flexible, and inexpensive at the point of use. Fuel costs were not a dominant factor affecting this growth. But, in the future this situation will be totally different. In 1972, fuel costs were already 80 percent of the annual production costs, as can be seen from Table 3.10 and Figure 3.13.

Year	Operation and Maintenance	Fuel	Total	
1958	0.91	2.94	3.85	
1959	0.85	2.82	3.67	
1960	0.85	2.81	3.66	
1961	0.81	2.78	3.59	
1962	0.79	2.75	3.54	
1963	0.75	2.66	3.41	
1964	0.74	2.64	3.38	
1965	0.75	2.60	3.35	
1966	0,73	2.61	3.34	
1967	0.77	2.65	3.42	
1968	0.75	2.68	3.43	
1969	0.76	2.77	3.53	
1970	0.83	3.15	3.98	
1971	0.94	3.77	4.71	
1972	0.99	4.06	5.05	

Table 3.10. Weighted average annual production costs for fossil-fueled electric plants, in mills per kWh (43)

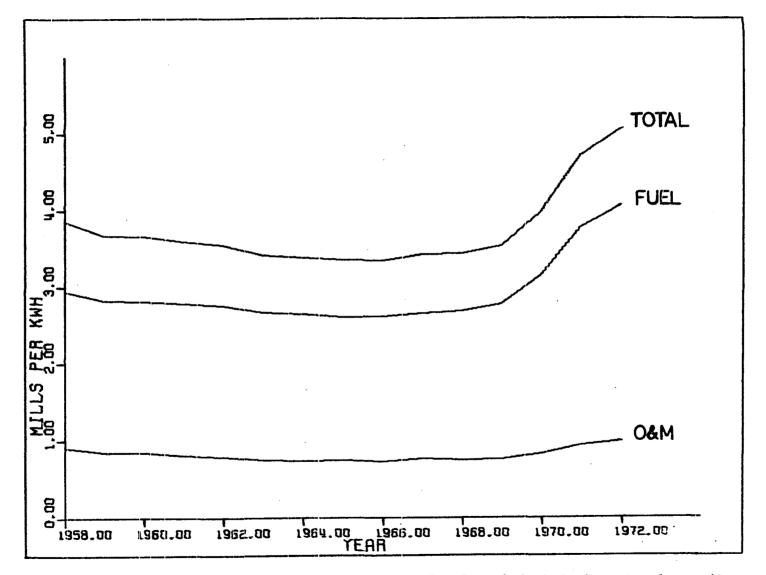


Figure 3.13. Weighted average annual production costs for fossil fueled electric plants (See Table 3.10)

Table 3.11 and Figure 3.14 show the weighted average fossil fuel costs, "as burned", for electric utility steam-electric generation from 1962 through 1972.

Year	Coal	Gas	011	Weighted Average
1962	25.6	26.4	34.5	26.5
1963	25.0	25.5	33.5	25.8
1964	24.5	25.4	32.7	25.3
1965	24.4	25.0	33.1	25.2
1966	24.7	25.0	32.4	25.4
1967	25.2	24.7	32.2	24.7
1968	25.5	25.1	32.8	26.1
1969	26.6	25.4	31.9	26.9
1970	31.1	27.0	36.6	30.7
1971	36.0	28.0	51.5	36.4
1972	38.0	30.3	58.8	39.9

Table 3.11. The weighted average fuel costs, for electric utilities, in cents per MBtu (43)

Having remained stable since the end of World War II, the average price for fuel in the U. S. suddenly started to increase in 1969, long before the Arab oil embargo, in concert with inflation. According to the Edison Electric Institute, the fuel cost per kWh in the U. S. in 1975 will be more than double its 1969 level. Therefore, rising fuel costs, though clearly a significant strain on the financial structures of the public utilities, will eventually, and sometimes immediately, be

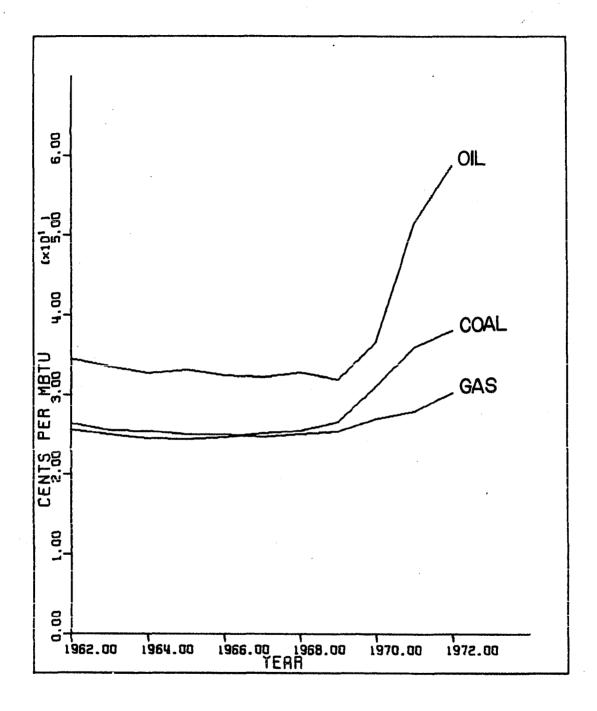


Figure 3.14. Weighted average fossil fuel costs for electric utilities (See Table 3.11)

passed on to the consumer in the future, which may, in turn, affect the growth of electrical energy consumption. Far more dangerous in the long run are four other factors: 1) the effect of the high cost of money in the U. S. on capacity-expansion funding, whether it is for nuclear or conventional technology, 2) inflation-whipped equipment and labor costs, 3) the effect of U. S. energy conservation practices on utility revenues, and 4) increasing environmental expenses.

Nevertheless, increasing affluence and higher living standards will lead to increased ownership of home appliances, such as air conditioners, dishwashers, compactors, self-defrosting refrigerators, and color televisions. Thus, the electricity consumption of the consumer sector is likely to continue to increase in the future.

In 1970 the U. S. consumed 1,550 billion kWhs of electrical energy. Forecasters generally agree that the demand for electrical energy will continue to increase at nearly constant compound growth rates for the rest of the century. Table 3.12 shows a survey of electrical energy forecasts for the U. S. In order to find the curve best fitted to the "average" forecast shown in Table 3.12, a number of regression models were tested. The polynomial regression model of

TFC =
$$269357.336 - 496.998y + 0.183y^2 + e$$
 (3.3)

proved to be the best, with a correlation coefficient of 0.992. The results of the regression analysis are shown in Tables 3.17 and 3.21.

In 1973, the electrical power peak load for the U. S. was 343,900 MW (43). Table 3.13 shows a number of electrical power peak load forecasts

				Electric	Energy	Consumpt	$\frac{109}{2000}$ k	Wh)	
Source	Ref. No.	1970	1975	1980	1985	1990	2000	2020	2050
DOI	61.	1522	2063	2729	-	-	-	-	-
AEC	150	-	-	2700	-	-	8000	-	-
Senate	150	-	-	2700	-	-	-	-	-
FPC	150	1484	2024	2693	*	-	-	-	-
FE	61	1448	1995	2581	3363	-	-	-	-
BOM	150	-		2739	-	-	-	-	-
Sartorius	61	1323	1885	2740	3905	-	-	-	-
Nathan	61	-	-	2641	-	-	5874	-	-
E. World	150	1500	2026	2757	3704	-	- `	-	-
ſE	150	-	-	2760	-	-	-	-	-
FPC	150	-	-	2 9 90	-	-	-	-	-
RFF	150	-	-	2300	-	-	-	-	-
Sporn	150	-	-	2800	-	-	-	-	-
Schurr	150	-	1966	2300	-	-	-	-	
Sporn	150	-	2000	3000	-		6000	-	-
Sporn	150	-	2160	2820	-	-	7000	-	-
Sporn	60	1529	-	· -	4000	-	8640	-	- .
PC	41	1535	•	3075	-	5828	10,000	-	-
IAE	41	1638	-	3202	-	5978	10,150	-	-
PCCP	61	-	-	2641	-	-	5870	· –	• •
DCC	63	1400	-	-	-	-	10,000	-	-

Table 3.12. Survey of electrical energy forecasts for the U.S. in 10⁹ kWh

Table 3.12.	Continued.
-------------	------------

				Electric	Energy	Consumpt	tion (10 ⁹ k	kwh)		
Source	Ref. No.	1970	1975	1980	1985	1990	2000	2020	2050	
GCG	62	1400					12,000	-	-	
WH	31	-	-	3085	-	5700	-	-	-	
EW	64	1391	-	2804	3820	5380	-	-	-	
USE	147	-	-	-	-	-	10,677	-	-	
USET	17	-	2 130	3000	4140	-	9010	-	-	
WH	150	1489	-	2626	-	-	-	-	-	
EEI	150	1481	-	2795	-	-	8000	-	-	
Lamb	150	1450	-	2800	-	-	-	•	-	
AEC	150	-	-	2857	-	-	9000	-	-	
E. World	150	-	-	3315	-	-	-	-	-	
Landsberg	150	1780	-	3088	••• ·	4882	7767	-	-	
WE	164	1302	-	2818	-	4813	8125	-	-	
FPC	156	1522	218 0	3075	4246	5828	-	-	-	
EPS	149	1550	2 272	-	-	-	-	-	-	
EWF	154	1540	2227	3200	4474	-	-	-	-	
EWF	153	1497	2103	2927	4041	-	-	-	-	
AEC	160	-	-	2700	-	4800	8000	12,500	18,500	
FPC	160	-	-	2700	-	-	7100	-	-	
Ritchings	158	1500	2020	2750	3700	-		-	-	
EEIB	148	1527	-	-	-	-	-	-	-	
Vogely	158	-	-	2731	-	-	9070	-	-	

Table 3.12. Continued.

							.on (10 ⁹ kl		
Source	Ref. No.	1970	1975	1980	1985	1990	2000	2020	2050
Star	159		-	-	-	60)	9000	-	-
Felix	159	-	e >	3300	-	5700	8850	-	18,950
Mills	157	-		-	-	-	9112	-	-
ANGE:									
		1323- 1638	1885 - 2272	2300- 3300	3363- 4474	4813 - 5978	5874- 12,000	12,500- 12,500	18,500- 18,950
EAN:									
		1491.3	2075.0	2830.8	3939.3	5434.3	8511.1	12,500.0	18,725.0

.

	Peak Load (10 ³ MW)								
Source	Ref. No.	1970	1975	1980	1985	1990			
EW	150	262	360	490	650				
FPC	150	271	370	494					
EEI	150	265		501					
EEIB	148	276							
PS	149	275	423						
FPC	150	277	396	554	766	1051			
EWF	154	275	390	549	769				
EWF	153	265	370	510	700				
WH	164	275	390	560	790	1045			
ANGE:									
		262-277	360 - 423	490-560	650 -7 90	1051-1045			
EAN:		271.2	385.6	522.6	735.0	1048.0			

Table 3.13. Electrical power peak load forecasts for the U.S. in 10^3 MW

for the U.S. In order to find the curve best fitted to the average forecast shown in Table 3.13, several regression models were tested. The logarithmic regression model of

$$TFC = e^{-126.331 + 0.066y}$$
(3.4)

proved to be the best, with a correlation coefficient of 0.999. The results of the regression analysis are shown in Tables 3.17 and 3.21.

Table 3.14 shows, in percent, several forecasts of what the primary energy sources for electric power generation in the U. S. will be in the future. Forecasters agree that the primary energy sources for electric power generation in the U. S. by the year 2000 will be nuclear energy and coal. Oil, gas, and hydro will comprise only a small proportion of the sources which will be used for electrical energy generation.

At present, the transportation sector is a relatively minor user of electric energy. However, within two decades mass transportation systems for short and medium distance travel in and near urban areas will probably become major electricity users (45, 47). During the years from 1985 to 2000, there may also be an increasing number of electric cars, which could become significant electricity users. The influence of electric vehicles on the power system load factor is discussed in Appendix C.

The most dramatic and direct challenge to increasing energy consumption has emerged from confrontation between the electric utility industry and environmentalists. Environmental concerns are likely to be considered far more important than they have been in the past in future decision-making that affects the energy supply. Environmentalists

ource	Ref. No.	Year	Coal	011	Gas	Hydro	Nuclear
MB	18	1965	55.0	6.0	21.0	18.0	0.0
		1970	49.0	11.0	24.0	15.0	1.0
		1980	35.0	2.0	14.0	13.0	36.0
		1985	29.0	17.0	11.0	8.0	35.0
CG	62	1970	49.2	13.7	21.4	14.4	1.3
		1980	21.2	16.7	10.6	9.1	42.4
		2000	3.2	3.2	1.6	4.0	88.0
porn	60	1960	53.4	6.0	21.2	19.4	-
		1 9 70	46.5	11.8	24.2	16.1	1.4
		1985	40.0	10.1	9.2	6.9	33.8
		2000	19.4	24.7	4.2	3.7	48.0
BASCO	23	1980	34.7	26.7	2.7	7.7	28.2
тн	31	1990	35.0	9.0	2.0	-	54.0
lassikas	36	1970	55 .0	14.6	27.6	-	2.8
		1980	41.9	12.1	14.4	-	31.6
·		1990	28.7	6.8	9.4	-	55.1
N:							
		1960	53.4	6.0	21.2	19.4	-
		1965	55.0	6.0	21.0	18.0	0.0
		1970	48.9	12.0	22.3	15.2	1.6
		1980	33.2	14.4	10.4	9.9	32.1
		1985	34.5	13.6	10.1	7.4	34.4
		1990	31.8	7.9	5.7	-	54.6
		2000	19.2	6.0	2.9	3.9	68.0

Table 3.14. Forecast of primary sources for electric power generation in the U.S. in percent

strongly criticized electric power companies, no doubt partly because the companies are conspicuous. But, actually the increased environmental emphasis will probably accelerate growth of the electrical share of the market. There are several reasons why this is likely: fuel combustion sites are often far from population centers; few large installations can more economically control combustion by products than can many smaller ones; the nuclear energy industry is growing very rapidly. Nuclear energy may meet 25 percent of the U. S. energy needs by the year 2000, partly because nuclear energy is more readily converted to electrical energy than are other energy sources.

Because of these factors, the next three decades will probably see electric power's share of the energy market grow faster than it has in past years. If past trends were extrapolated without modification, a share of 38 to 53 percent in the year 2000 would be forecasted. Hence, a target figure of 45 percent seems reasonable and justified.

A dramatic increase in fuel conversion efficiency has been achieved in this century by the electric power industry. In 1900, less than 5 percent of the energy in the fuel was converted to electricity (the early-day turbine-generators, with their steam supplied by coal-fired boilers, required approximately 6 pounds of coal to produce 1 kWh). Today the average efficiency is about 32 percent. This figure may reach about 36 percent by the year 2000. Table 3.15 shows historical and projected heat rates for steam-electric generating units in the U. S., in Btu per kWh. Figure 3.15 shows that heat rates for the most efficient fossil-fueled steam-electric generating units decreased until 1950, and

Year	Heat Rate	Comment	Year	Heat Rate	Comment
1925	25,000	Historical	1961	10,552	Historical
1930	19,800	11	1962	10,493	
1935	17,850	11	1963	10,438	11
1936	17,800	11	1964	10,407	11
1937	17,850	11	1965	10,384	"
1938	17,450	11	1966	10,399	11
1939	16,700	98	1967	10,396	11
1940	16,400	**	1968	10,371	**
1941	16,550	18	1969	10,457	81
1942	16,100	**	1970	10,508	†1
1943	16,000	11	1971	10,536	11
1944	15,850		1972	10,479	11
1945	15,800	11	1973	10,429	Ħ
1946	15,700	11	1975	8,900	Projected
1947	15,600	"	1980	8,600	11
1948	15,738	11	1985	8,300	11
1 9 49	15,033	11	1990	8,050	11
1950	14,030	**	1995	7,850	11
1951	13,641	••	2000	7,750	17
1952	13,361	**			
1953	12,889	11			
1954	12,180				
1955	11,699	**			
1956	11,645	11			
1957	11,365	**			
1958	11,090	11			
1959	10,879	**			
1960	10,701	11			

Table 3.15. Historical and projected heat rates for steam-electric generating units in the U. S., in Btu/kWh (28, 40)

.

.

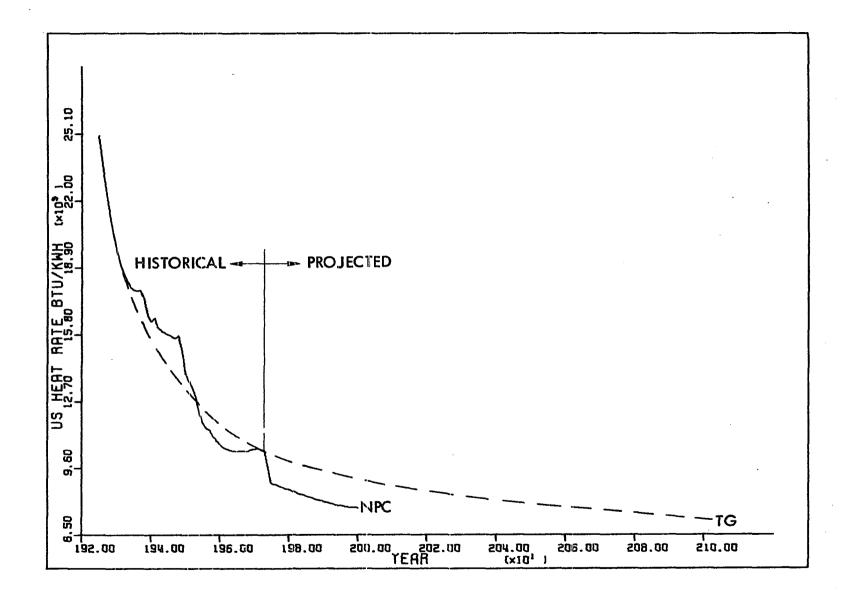


Figure 3.15. Historical and projected heat rates for steam-electric generating units in the U.S.

then leveled off. Heat rates, as projected by the Federal Power Commission, through the year 2000 are also shown (designated by NPC) in this figure. In order to find the curve best fitted to the historically declining heat rates, a number of regression models were tested. The polynomial regression model of

TFC =
$$25.56.692 - 470.324y + 4.675y^2 - 0.014y^3 + e$$
 (3.5)

proved to be the best, with a correlation coefficient of 0.947. Use of analysis of variance to test the null hypothesis of

$$H_0: b_j = b_{j0}$$
 (3.6)
 $H_1: b_j \neq b_{j0}$

at the 0.05 level of significance, resulted in sound rejection of the hypothesis. Table 3.16 illustrates the analysis of variance. The forecasted heat rates, as calculated using this regression analysis, are plotted and designated by TG in Figure 3.15, and are also shown in Tables 3.17 and 3.21.

Table 3.16. Analysis of variance table for the null hypothesis

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	Computed f(3,n-3)	Critical f _{0.05} (3,n-3)
Regression	577102821.571	3	192367607.190	253.685	2.83
Error	31848199.646	42			
Total	608951021.217	45			

Í

	m -h-1 m -s-s-s		Electrical	Energy	
Year	Total Energy Consumption (10 ¹⁵ Btu)	Percentage of Total Energy Consumption	Heat Rate (Btu/kWh)	Produced Energy (10 ⁹ kWh)	Peak Load (103 MW)
1970	68.8	25.0	10508.0	1550.0	276.9
1975	73.9	28.0	10452.0	1979.7	364.5
1980	87.9	32.1	10402.0	2712.5	491.5
1985	1.03.6	35.0	10123.0	3581.9	649.0
1990	1.21.9	44.2	9951.0	5414.5	965.8
1995	141.6	44.7	9712.0	6517.2	1144.5
2000	164.5	45.0	9557.0	7745.6	1360.3

· · · · · ·

Table 3.17.	Electrical	energy	forecast	for	the	v.	s.	for	the	years	from	1970	to	2000

.

The curve derived as a result of the regression analysis appears to be more reasonable than the Federal Power Commission's heat rate projection curve. The reason for this is that the rate of decline in average heat rates will not be as rapid as in the past until improved alloys are developed to permit higher steam pressures and temperatures. Apart from steam conditions, recent improvements in both turbines and boilers have contributed to somewhat lower heat rates. Increases in unit size have also provided some advances, but better metals and higher throttle temperatures offer the best potential for enabling further major improvements. As larger and more efficient units are placed in service and some of the older and very inefficient capacity is retired or placed in cold standby, the average heat rate can be expected to improve. However, such improvement would tend to be offset by environmental control factors, including the increasing use of residual oil to meet sulfur oxide emission regulations, the addition of precipitators and scrubber facilities, and greater use of cooling towers rather than once-through cooling. Other offsetting factors would be the continuing decrease in the quality of coal and the operation of some inefficient units at high plant factors because of delayed installation of more efficient new capacity.

Forecasts of total U. S. energy requirements and electric power requirements to the year 2000 are summarized in Table 3.17. Data from 1970 are included for reference (28, 36, 49). Only a small improvement in the annual load factor¹ was assumed in making the load forecast.

¹Annual Load Factor = (kWh Produced/8760 x (kW Peak Load))

F. Future Society

Although the birthrate has decreased to the replacement level, the U. S. population probably will not stabilize for 60 to 70 years. A rapidly growing energy supply will be needed to provide for increasing transportation needs, waste recycling, environmental improvement, domestic comforts, and the growing demand for goods and services (8).

Even when population growth does slow down, growth in the GNP will probably not be significantly slowed, since industrial systems are becoming more automated (33). Hence, growth in GNP per capita would be speeded by a decrease in population growth. The same is true of per capita income, which has historically grown proportionately more than the population. If population growth ceases, even faster growth of per capita income is likely. This could happen sometime after the year 2000, provided the population growth projection is fairly accurate and zero population growth is ultimately achieved.

In "Future Shock," Toffler predicts that in the "super industrial" American society of tomorrow, service industries will ultimately become "experimental industries" (52). (Service industries include dry cleaners, hospitals, restaurants, etc.) Man's societies have successively been based on hunting, then agriculture, and now industry. The present day industrial society is now changing to a post-industrial society. Man at first was satisfied with basic food and shelter; then he wanted material goods; now he wants innumerable goods and services. Contrary to traditional economic thought, Toffler envisions that man's desire for material goods will become saturated, whereupon he will desire to "consume" experiences,

rather than material goods.

In the physical world, no quantity can grow exponentially indefinitely without being limited by some force or another (See Appendix B). Toffler's thinking is consistent with this fact. Although the production of material goods has increased exponentially for an extended period of time, its historical curve will eventually resemble the Gompertz curve (Figure B.1, Appendix B). This will occur primarily because human goals will change. Man will be fairly content with his abundant food supply, his shelter, and his material goods, and so will embark on new pursuits. The change in the rate of growth of material goods production will come gradually, though, not suddenly because resources are exhausted, as in the model of the jar and the fruit flies (See Appendix B).

This scenario is not feasible for the 20th century. Americans are not nearly satisfied with the goods and services they possess, in spite of the fact that they have more than anyone else in the world. And, there will continue to be poverty in this country, at least for awhile (54). Because different people are satisfied with different degrees of material comfort, there is no way of knowing what degree of comfort will eventually satisfy most people. But, certainly poverty must be eliminated and a much higher average standard of living must be attained before people will be satisfied with the material goods that they have. This may be more possible when the population begins to stabilize, since per capita income or the average living standard could then increase more rapidly. When this country no longer has the worries of providing basic necessities to a growing population, it can then make great strides

in eliminating poverty and establishing a stable affluent society which will begin to strive for nonmaterial goals.

In an industrial society, goods and services cannot be produced and physical comforts cannot be provided on a large scale without energy consumption. Thus, stabilization of demand for material comfort and goods would cause growth of energy consumption per capita to decrease and stabilize. Such reasoning is as valid for any industrial nation as it is for the U. S. But, there are many poor countries in the world where people are starving and it is these same countries where population growth rates are the highest (See Table 3.2). This situation inhibits any kind of progress in these countries and also increases the threat of war because of the huge gap between them and the industrialized nations. The industrialized societies can promote world stability by helping the developing nations to solve their problems, which are made worse by rapid population growth (54).

G. Energy Demand Forecast for the 21st Century

The scenario presented in the previous section is highly subjective and cannot really be quantitatively analyzed. There is no way to predict when or at what level people's demand for energy will be satisfied. But, as has been discussed, this will probably not happen until the population begins to stabilize which will be after the turn of the century. In theory, it will happen after population growth slows, because it will take time for the per capita level of material wealth to increase, which will be a result of slower population growth. Considering anticipated

growth of human knowledge and probable future progress, the demand for energy should be satisfied in the 21st century.

Since a crude model is better than no model at all, it was postulated that per capita growth of energy use will follow a Gompertz curve defined by the growth rates in Table 3.18. The probable total energy consumption in the U. S. through the next century was forecasted, as shown in Table 3.19, using this curve and the projected population growth rates in Table 3.3. Energy was assumed to be available, but at a price reflecting the cost of environmental protection and byproduct capture and recycling. The U. S. population, energy use per capita, and the resulting annual rate of energy use are plotted to the year 2000 in Figure 3.16.

Period	Growth Rate of Btu/Capita (% per year)	
1950-1970	2.45	
1970-2030	2.29	
2030-2040	2.0	
2040-2050	1.6	
2050-2060	1.4	
2060-2070	1.0	
2070-2080	0.7	
2080-2090	0.5	
2090-2100	0.2	

Table 3.18. Annual growth rate of total energy consumption

In this projection, which is based on the scenario of the future

Year	Consumption/Capita (10 ⁶ Btu)	Population (10 ⁶)	Total Energy Consumption (10 ¹² Btu)
1950	225.4*	152.3*	34,328.4
1955	241.8	165.9	40,114.6
1960	252.4	180.7	45,608.7
1965	259.7	194.6	50,537.6
1970	298.7*	208.0*	65,600.0 [*]
1975	334.5	221.0	73,924.5
1980	374.6	234.8	87,956.1
1985	419.5	246.9	103,574.6
1990	469.8	259.6	121,960.1
1995	526.1	269.3	141,678.7
2000	589.1	279.2	164,476.7
2005	659.8	288.9	190,616.2
2010	738.8	298.8	220,753.4
2015	827.4	309.1	255,749.3
2020	926.6	317.5	294,195.5
2025	1037.7	326.2	338,497.7
2030	1162.0	335.1	389,386.2
2035	1283.0	339.0	434,937.0
2040	1416.5	342.9	485,717.9
2045	1533.5	346.9	531,971.2
2050	1660.2	350.9	582,564.2
2055	1779.7	353.5	629,124.0
2060	1907.9	356.2	679,594.0
2065	2005.2	358.9	719,666.3
2070	2107.5	361.5	761,861.3
2075	2182.3	361.5	788,901.5
2080	2259.8	361.5	816,917.7
2085	2316.8	361.5	837,523.2
2090	2375.3	361.5	858,671.0

.

Table 3.19. Forecasted total energy consumption for the U.S.

.

.

Table 3.19. Continued.

Year	Consumption/Capita (10 ⁶ Btu)	Population (10 ⁶)	Total Energy Consumption (10 ¹² Btu)
2095	2423.3	361.5	876,023.0
2100	2423.3	361.5	876,023.0

* Historical values

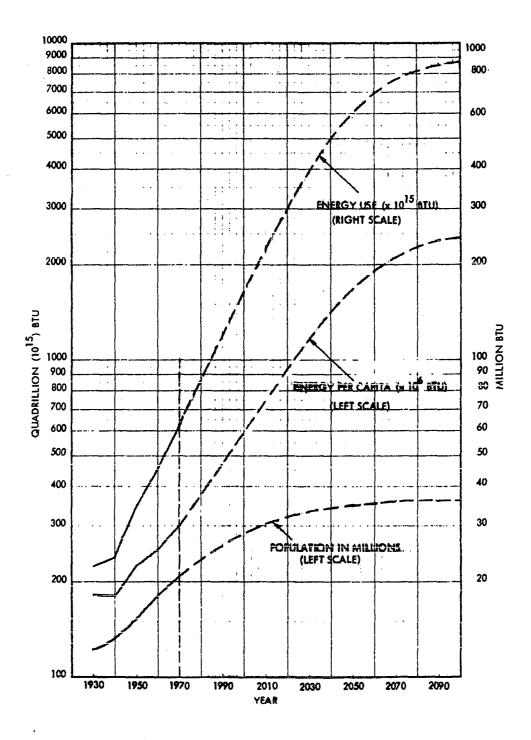


Figure 3.16. Projection of U. S. population, energy use per capita and total energy use to the year 2100 (See Table 3.19)

presented in the previous section, annual U. S. energy consumption by the end of the 21st century is approaching 10^{18} Btu and has stopped increasing. This quantitative projection is, however, no better than the theory on which it is based, which may be incorrect. Hence, this projection of energy consumption in the 21st century as well as any succeeding analysis, must be viewed in context of the scenario from which it derives.

For a point of reference in evaluating these energy projections, it is helpful to remember that the total energy consumption in the U. S. from 1850-1970 was about 2.34 Q (See Section B). The integral of the total energy curve in Figure 3.16, which was calculated using the computer program given in Appendix D, from 1970 to any given year, is shown in Figure 3.17. Table 3.20 represents the cumulative energy consumption from 1970 to the given date. From this table one can quickly determine the energy requirement for any given interval, based on this energy forecast. For example, in the period from the year 2000 to 2015, (6.896624 - 3.230753) or 3.665871×10^{18} Btu will be required. In other words, more energy is projected to be consumed in this 15 year period than in the 120 year period from 1850 to 1970. These figures are used as part of the basis for a fuel forecast in Chapter IV.

Based on broad assumptions about expected socioeconomic conditions and trends, U. S. energy needs have been projected to the year 2000. The type of energy, which this will be after the year 2000, has not been considered, although 45 percent of it is expected to be electric energy. This figure was derived through extrapolation of the historical trend as well as judgment, and agrees reasonably well with other forecasts,

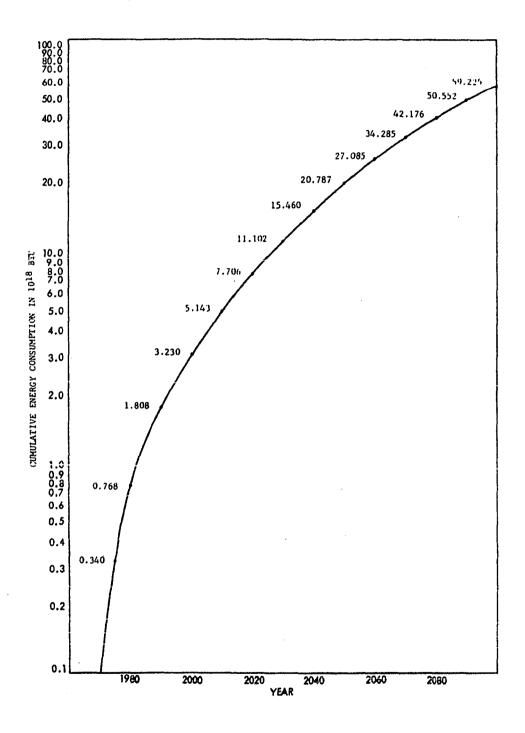


Figure 3.17. Cumulative total energy consumption in the U.S. from the year 1970 to the year 2000 (See Table 3.20)

Interval (From 1970 to the year)	Cumulative Energy Consumption (10 ¹⁸ Btu)
1975	0.340537
1980	0.768476
1985	0.882206
1990	1.808833
1995	3.030655
2000	3.230753
2005	4.680992
2010	5.143578
2015	6.896624
2020	7.706822
2025	9.848339
2030	11.102776
2035	13.733304
2040	15.460862
2045	18.582938
2050	20.787807
2055	24.401858
2060	27.085564
2065	31.180468
2070	34.285765
2075	38.773823
2080	42.176407
2085	46.930649
2090	50.552543
2095	55.496512
2100	59.225771

Table 3.20. Forecasted cumulative total energy consumption in the U.S.

as shown in Table 3.8.

Considering the energy needs and available fuels that are forecasted for the next century, energy is expected to be increasingly converted to electricity after the year 2000. By the early part of the 21st century, the U. S. will be using most of its energy as electricity, although about 15 percent of the energy consumption is expected to remain nonelectric. Nonelectric energy would include, for example, liquid fuel for aircraft, rockets, and land vehicles, gaseus fuel for specialized applications, and fuel used for nonenergy purposes. In Figure 3.18, an attempt has been made to quantify the portions of energy that will be used in various forms in the future, considering the forecasts of energy needs to the year 2000 and the huge energy needs expected in the early part of the 21st century. The means by which this was done is discussed in Chapter IV. In Table 3.21 some forecasts of electric energy production in the 21st century are presented, which are based on the data in Figure 3.16 and 3.18. In calculating the heat rates it was assumed that power plant efficiencies would gradually improve. In the 21st century, nuclear fission plants will operate at efficiencies of up to 35 to 40 percent, and coal-fueled plants will operate at efficiencies approaching 40 to 45 percent. Nuclear fusion plants might be 45 to 50 percent efficient (10).

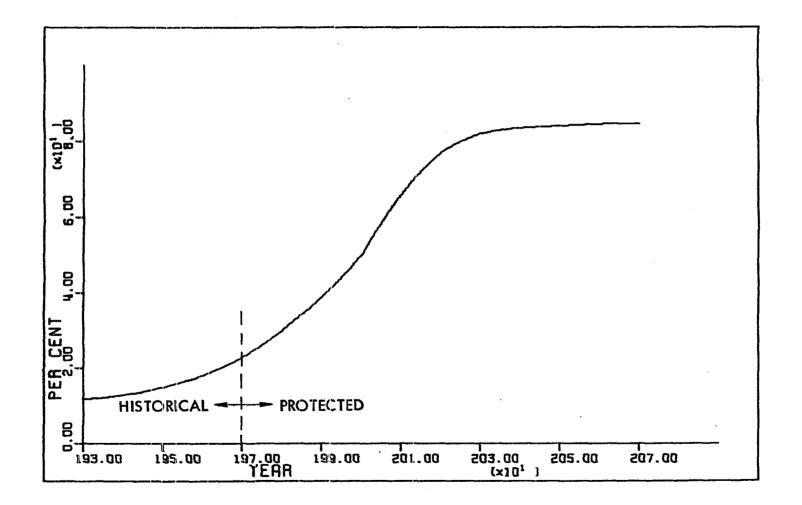


Figure 3.18. Historical and projected total energy converted to electricity in the U.S., in percent

			Electrical En	nergy		
Year	Total Energy Consumption (10 ¹⁵ Btu)	Percentage of Total Energy Consumption	Heat Rate (Btu/kWh)	Plant Efficiency (%)	Produced Energy (10 ¹² kWh)	Peak Load (10 ⁶ MW)
2000	164.5	45.0	9557.0	35.7	7.745	1.360
2015	255.7	72.0	9001.0	37.9	20.453	3.537
2 0 30	389.4	81.0	8550.0	39.9	36.890	6.285
2050	582.6	82.0	8124.0	42.0	58.805	9.872
2070	761.8	83.0	7582.0	45.0	83.394	13.770
2100	876.0	85.0	7108.0	48.0	104.755	17.083

.

.

-

IV. ENERGY SUPPLY PROBLEM

In Chapter III, only the demand side of the energy dilemma was discussed. In this chapter, the supply side will be emphasized: future energy resources will be reviewed, supply projections developed for the U. S., and some energy related issues will be discussed in light of projections. The U. S. has been gifted with a substantial share of the earth's fossil fuels (88). The actual amount of fossil fuel that exists is, of course, unknown, since the earth cannot be x-rayed and its exact composition assessed. Therefore, in this study estimates made by experts who render opinions on the extent of the earth's resources based on their geological knowledge and on exploratory work will be used.

A. Developments in Fuel Consumption

Figure 4.1 shows the developments in fuel consumption in the U. S. from 1850 through 1970 (11). As can be seen from the figure, the use of coal increased rapidly after 1850 and coal became the dominant energy source during the years from approximately 1870 to 1930. Its importance declined somewhat thereafter, and in 1970 it supplied only about 20 percent of the U. S. energy requirement. Some oil was used before 1900 and during the early part of this century, but only on a small scale until about 1920, when it began to replace coal for some purposes. By 1970, about 44 percent of the primary fuel used was oil, about 23 percent of which was imported (23, 31, 87). Use of natural gas has also increased in a relatively short time. It became a significant

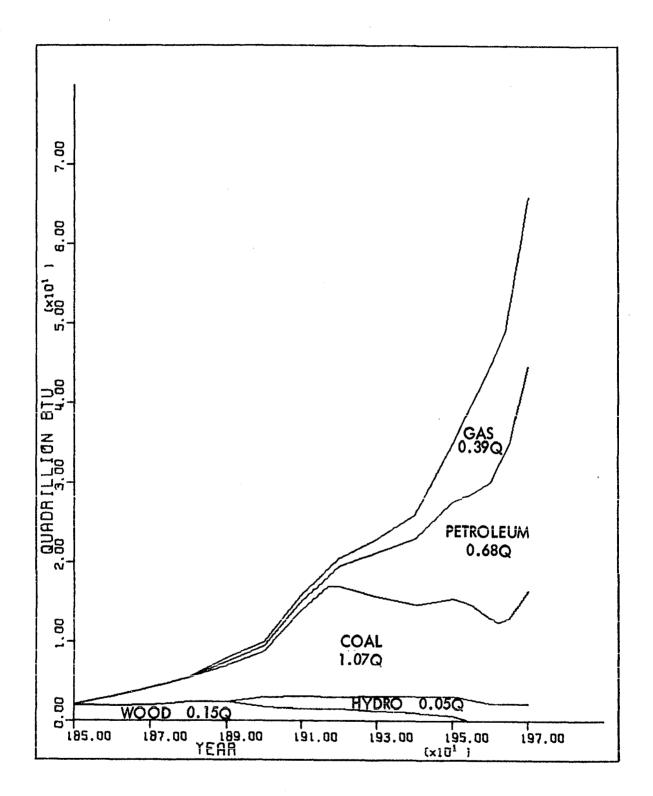


Figure 4.1. Historical U.S. consumption of energy resources (11)

primary fuel in the 1940's, and has been a major source of energy ever since. In 1970, about 32 percent of all energy expenditures were for natural gas. Hydro energy has been used since about 1890, but it has never supplied more than about 4 percent of the U. S. energy requirement, and will never be a major energy source. Nuclear reactors met about 0.3 percent of the energy need in 1970. Energy from other sources was negligible.

An estimate of the amount of energy derived from various fuels that was consumed in the period from 1850 to 1970 was obtained by using the computer program given in Appendix D to integrate the curves in Figure 4.1. The results, in units of Q (10^{18} Btu), are summarized in Table 4.1.

Fuel	Percentage of 1970 Energy Consumption	U. S. Energy Consumption from 1850 to 1970 (Q) 1.07 0.68	
Coal	20		
011	44		
Gas	32	0.39	
Wood	-	0.15	
Hydro	3.7	0.05	
Nuclear	0.3	-	
Total	100	2.34	

Table 4.1. U. S. energy consumption from 1850 to 1970

B. Energy Resources

1. With present technology

Accurate, or even approximate, estimates of amounts of available, or potentially available, fuels are extremely difficult to make due to the various uncertainties concerning the amounts of the fuels.that actually exist. In order to examine energy resources, it is necessary to introduce some terminology. <u>Reserves</u> will be defined as the quantities that are known to exist and can be extracted at present cost levels using current technology. <u>Resources</u> will be defined as the quantities proven or unproven which can be extracted at or below a specified cost level using currently feasible or reasonably assured future technology. Finally, the <u>resource base</u> will be defined as all proven or unproven quantities that exist in a given geographical area regardless of whether they can be extracted or not (22). The most meaningful quantities for long term assessment are resources and the resource base, since proven reserves are relatively small, and of course they change as the result of further exploration.

Table 4.2 shows a summary of estimates of U. S. fossil fuel resources. The table, while by no means complete or exhaustive, covers the most authoritative estimates available today. These data can be converted to common energy units by using the following conversion factors (36)

$$1 \times 10^{15}$$
 Btu = 100 x 10^{10} ft³ of gas
" = 178 x 10^{6} Bbl of oil
" = 44 x 10^{6} tons of coal

and by selecting the largest of the individual estimates in Table 4.2. The results of this conversion are shown in Table 4.3. The fossil resources in this table represent the initial supplies of fuel in the U. S. including the portion that has already been used.

Table 4.2. Estimates of U. S. fossil fuel resources, including Alaska

Source (Coal 10 ⁹ metric tons)	0i1 (10 ⁹ Bb1)	Natural Gas (10 ¹² ft ³)
Hubbert (Averitt) (144)	2972	200 ^a	1075 ^b
Scarlott (54)	-	250 - 750 ^C	-
Schurr & Netschert (22)	-	500 ^b	-
Landsberg & Fischman (14	5) 1700	250 ^a 500b	1200 - 1700 ^a
Hottel & Howard (10)	-	600 ^C	-
Dept. of Interior (13)	-	-	1500 ^b
Sartorius (36)	17-260 ^d	5-9Q ^C	2Q ^b

^aRecoverable resources.

^bResource base. ^cOil shale only. ^dOne Q = 10^{18} Btu.

Туре	Quantity	Energy Equivalent (10 ¹⁸ Btu) 38 2.8	
Coal	1700×10^9 tons		
0il (without shale)	250 ⁴ 500 ^b		
Natural Gas	$1700 \times 10^{12} \text{ ft}^3$	1.7	
Hydro	90 x 10 ⁶ KW (386 x 10 ⁹ KWh/yr.)	0.004 (per yr.)	

Table 4.3. Conventional fuel resources in the U.S. (91, 92)

^aRecoverable resources.

Resource base.

Hydro power should be considered a conventional energy source. The maximum limit on U. S. hydro capacity is about 230-390 10^3 MW (22). However, Landsberg suggests that the practical maximum hydro capacity will not be more than 90 10^3 MW at any time in the future (89). Base on an equivalent power plant efficiency of 33.3 percent, this capacity is equivalent to a thermal input of 0.004 x 10^{18} Btu per year.

Nuclear power generation is still in the commercial development stage, however, it is expected to expand very rapidly in the next 10 to 15 years (46). Most nuclear reactors now in operation or on order are light water reactors (LWR). Therefore, uranium must be considered a conventional fuel to the extent that it can be utilized by present technology. Table 4.4 shows estimates of the quantities of U. S. uranium resources that have been estimated by the AEC to be recoverable at various costs (10, 91).

2. With future technology

Fission means the splitting of a nucleus into several nuclear fragments accompanied by the release of energy and neutrons. The fission reaction is triggered by the collision of a neutron with a U^{235} nucleus. The new neutrons released from the fission reaction produce more reactions if they collide with other nuclei. The continuation of this process is known as a "chain reaction." Today, only U^{235} can be used in the fission process. It is possible, however, to use the surplus neutrons released in the fission reaction to produce an artificial radioactive isotope that is fissionable. If U^{238} is placed in the reactor, for example, it is transformed into plutonium 239, which is fissionable and can be used as a nuclear fuel. Thorium 232 also becomes fissionable by absorbing neutrons. The process of producing fissionable material in the fission reactor is called "breeding" and the reactor in which this takes place is called the "breeder reactor" (170).

The need to generate enormous additional amounts of electric power while at the same time protecting the environment, is becoming one of the most important major social and technological problems that this society must resolve over the next few decades. Nuclear breeder reactors hold great promise as the solution to these problems. By producing more nuclear fuel than they consume, they would make it feasible to utilize enormous quantities of low-grade uranium and thorium ores dispersed in the rocks of the earth as sources of low-cost energy for thousands of years (92, 94).

Until such time that breeder reactors become a reality, coal will

95 ·

be by far the most abundant fuel. Moderately priced uranium is relatively scarce. Gas and oil, though readily used fuels of exceptional quality, are in short supply. Breeder reactors, if fully exploited commercially, would increase the ultimate effectiveness of uranium fuel one hundred fold and the total energy resource base at least tenfold. In that case, uranium would be the most abundant fuel, and it will be economically practical to extract even the most expensive ones, since the breeder will increase the utilization factor.

Because of this great potential effect on energy sources, the AEC, the nuclear industry and the electric utilities have launched large scale efforts to develop the technology whereby it will be possible to have a breeder reactor generating electric power on a commercial scale (94-96).

The basic types of breeder reactors under study in the U. S. are: 1) the Liquid Metal Fast Breeder Reactor (LMFBR), 2) the Gas Cooled Fast Reactor (GCFR), 3) the Molten Salt Breeder Reactor (MSBR) and 4) the Light Water Breeder Reactor (LWBR) (10). In the U. S. and several other countries, it was decided that the concept of the LMFBR was the most attractive to pursue. In the U. S., the LMFBR has been under active study for over 24 years (95).

Some proponents of breeder reactors consider the GCFR to be a better alternative than the LMFBR. They argue that the handling properties of the inert helium gas used in the GCFR are preferable to those of the liquid sodium used in the LMFBR. Furthermore, the gas turbines could possibly be used in a closed helium cycle (82, 94, 99). If used with gas turbines, it is argued that the GCFR could be easily adapted to dry

cooling and would have a lower capital cost than the LMFBR (100, 101).

Since the GCFR fuel requirements are similar to those of the LMFBR, proponents believe that the cost of GCFR development would be relatively low (60). The cost of its development will probably be paid, in order to ensure the overall success of the national breeder development effort. By 1990, it is probable that, for the purpose of extending the energy resource base, there will be a fully coordinated energy program in the U. S. which will include breeders.

C. Fuel Supply Forecasts

In Chapter III, a total energy consumption forecast for the U. S. was presented. About 3.23×10^{18} Btu of all fuels will be consumed during the last three decades of this century, according to that forecast. However, it is difficult to predict a fuel mix since, in the long run, fuels can easily be substituted or interchanged. Even though the energy requirement in the years from 1970 to 2000 will be huge, any one of the conventional fuels will be able to provide a major part of it. Hence, there are many possible combinations of fuels which could meet the requirement. The composition of the future fuel mix will be a function of the evolving technology of the demand Sectors, including new energy forms and conversion systems and the ability of resources to substitute for each other under various conditions of price and availability.

Considering the fact that proven oil reserves in this country are disturbingly low and domestic exploration is decreasing, the U.S. will have to increase its dependence on foreign oil in the near future (46). According to the National Petroleum Council estimates, the U.S. will

import 40 percent of its oil by 1975 and 57 percent of it by 1985 (18).

Natural gas use cannot continue to grow as rapidly as it has since 1950 (See Figure 4.1), because the supply is limited. Environmental problems are blocking further domestic exploration for natural gas. In addition, there is a shortage of capital to finance this exploration, since the producer prices have historically been regulated (46). In the next several years, gas and liquid natural gas (LNG) imports will supplement the domestic supply. After 1980, Alaska pipeline imports and synthetic gas from coal will contribute to the supply.

Paradoxically, coal, the most polluting of the fossil fuels, is also the most plentiful source of energy. It appears to be the logical source for much of the future energy need. It is still used to fire boilers for the generation of 55 percent of all steam-electric power in the U. S., although it accounts for only 20 percent of the total energy. But, coal poses environmental problems at every stage, from mining to combustion. Strip mining creates an acid damage problem and deforms the landscape. The EPA restricts combustion of high sulfur coals and the supply of low sulfur coals is limited (80 percent of Eastern coal reserves are more than 1 percent sulfur by weight) (103). Although techniques to desulfurize stack gas are being developed, none are or will be available commercially until 1980 (46). Other desulfurization alternatives are being studied, but there is still much time consuming R & D left to do.

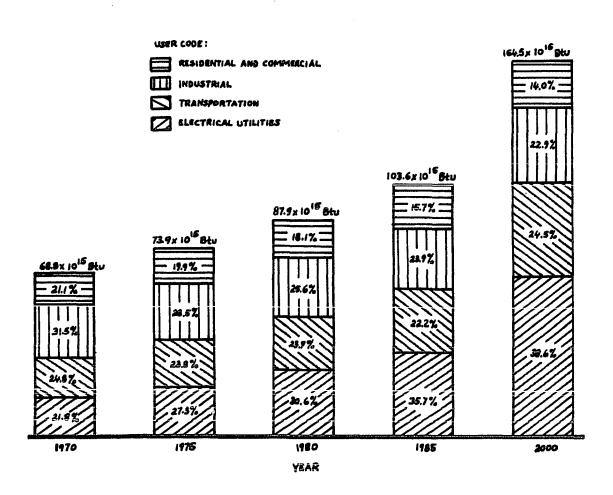
The Nuclear power share of the energy market is expected to grow, although forecasters disagree on just how rapidly. In recent years there have been delays, hopefully temporarily, in constructing nuclear plants and in licensing to build them. If, as has been discussed, commercial

breeder reactors are in use by 1985 to 1990, there will be an ample supply of nuclear fuel.

A forecast of fuel demand for the years from the present to the year 2000 must take into account the interrelated factors of relative fuel prices, new technology, government regulation, environmental developments, etc. Several forecasts have been prepared and are summarized in the following tables. Many attempts at forecasting demand have been based on projections of recent trends in energy consumption and on the forecasters' knowledge of individual industries. While such forecasts do not enable one to estimate demand responses to changes in prices, they may still be useful as "boundary" projections for the relatively near future. Table 4.5 and Figure 4.2 show such forecasts of U.S. total energy consumption by major consuming sectors. In these judgemental estimates, energy demand is divided into three primary use sectors - residential and commercial; industrial; transportation - and one energy "transformation" sector, electric utilities, which transforms primary fuel into electrical energy, which then becomes an input which goes into the three primary sectors. Demand in each of the major sectors for a particular energy source is affected by fuel price and other economic and demographic variables. Table 4.6 and Figure 4.3 show forecasts of U. S. consumption of energy resources by major sources. The ranges of the forecasts and the "average" forecast are also shown in this table. The average forecast indicates that the percentage of the market supplied by natural gas and oil will decline gradually from the high of 76 percent in 1970, but will remain above 50 percent even as late as the year 2000.

For each fuel, a number of regression models were tested in order

Source	Ref. No.	Year	Industrial	Residential and Commercial	Transportation	Electric Utilities
NAE	41	1980		-	-	33.0
		1990	-	-	-	41.7
		2000	-	-	-	45.5
EMUS	61	1970	31.6	21.5	24.2	22.6
		1980	28.3	1 9.7	24.5	27.7
		2000	19.3	12.5	25.3	43.0
EBASCO	23	1970	-	-	-	24.8
		1975	-	-	-	26.8
		1 9 80	-	-	-	29.3
CMB	18	1970	32.0	19.0	24.0	25.0
		1985	26.0	16.0	21.0	37.0
USET	17	1971	29.4	20.7	24.6	25.3
		1975	28.5	19.9	23.8	27.9
		1980	26.8	18.2	23.8	31.2
		1985	25.9	16.2	23.2	34.6
		2000	24.5	11.4	22.2	41.9
H. δ: H.	10	1970	30.7	20.7	23.9	24.7
NPC	18	1970	26.2	19.2	24.0	24.6


Table 4.5. Forecasts of U.S. total energy consumption by major consuming sectors in percent

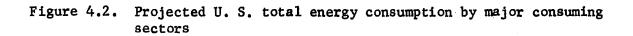

.

Table	4.5.	Continued.
Table		CONCELLIGE C.

Source	Ref. No.	Year	Industrial	Residential and Commercial	Transportation	Electric Utilities
	و بر چیا است است او این است او این او ای	1980	21.8	16.3	23.3	32.0
		1985	19.7	15.0	22.5	35.4
Cook	7	1970	37.0	25.0	28.0	9.0
		200 0	25.0	18.0	32.0	24.0
RANGE:						
		1970	26.2-37.0	19.0-25.0	23.9-28.0	9.0-25.0
		1975	28.5	19.9	23.8	26.8-27.9
		1980	21.8-28.3	16.3-19.7	23.3-24.5	29.3-33.0
		1985	19.7-26.0	15.0-16.2	21.0-23.2	34.6-37.0
		1990	ta	-	-	41.7
		2000	19.3-25.0	11.4-18.0	22.2-32.0	24.0-45.5
MEAN:						
		1970	31.5	21.1	24.8	21.8
		1975	28.5	19.9	23.8	27.3
		1980	25.6	18.1	23.9	30.6
		1985	23.9	15.7	22.2	35.7
		1990	en	-	-	41.7
		2000	22.9	14.0	24.5	38.6

\$.

Source	Ref. No.	Year	Coal	0i1	Gas	Hydro	Nuclear
СМВ	18	1965	22.0	44.0	30.0	4.0	0
		1 9 70	19.7	44 _° 7	31.7	3.8	0.3
		1980	18.0	41.0	25.0	4.0	12.0
		1985	16.6	47.2	20.2	2.8	13.1
EBASCO	23	197 0	20.0	43.4	32.6	3.8	0.29
		1980	16.0	41.3	30.8	3.2	8.7
EMUS	61	1980	21.8	40.8	28.9	3.4	4.6
		2000	13.3	34.2	24.7	3.0	25.8
PCCP	61	1980	20.7	34.7	31.5	•••	9.4
		2000	18.0	35.0	28.9	-	15.9
FFF	61	1980	29.7	44.1	23.2	3.0	-
		2000	36.5	41.8	20.0	1.5	-
RAF	61	1980	19.9	41.6	30.5	3.3	4.0
		2000	13.3	45.6	25.0	2.1	14.1
USE	147	1970	20.0	43.0	32.8	3.9	0.3
		1975	18.2	41.0	32.4	3.2	5.5
		1985	16.7	35.6	29.6	2.6	15.6
		2000	13.7	34.6	26.4	2.6	22.7

Table 4.6. Forecasts for U. S. consumption of energy resources by major sources in percent

.

Table 4.6. Continued.

.

.

Source	Ref. No.	Year	Coal	0i.1	Gas	Hydro	Nuclear	
USET	17	1971	18.2	44.2	33.0	4.0	0.6	
		1975	17.2	43.7	31.4	4.4	3.2	
		1980	16.8	43.9	28.0	4.2	7.0	
		1985	18.4	43.5	24.3	3.7	10.1	
		2000	16.3	37.2	17.7	3.1	25.7	
LAIRD	36	1970	20.1	43.0	32.8	3.8	0.3	
		2000	13.7	34.6	24.6	2.6	22.7	
NASSIKAS	36	1970	20.1	43.0	32.8	3.8	0.3	
		1980	18.9	40.0	27.9	3.2	10.0	
		1990	13.2	35.7	25.5	2.6	23.0	
MORTON	36	1970	20.1	43.0	32.8	3.8	0.3	
		1985	16.7	35.6	29.5	2.6	15.6	
		2000	13.7	34.6	26.4	2.6	22.7	
NPC	18	1985	19.3	43.4	17.0	2.5	17.2	
SPORN	60	1960	23.2	41.5	31.4	3.9	-	
		1970	18.0	44.8	33.2	3.7	0.3	
		1985	20.7	42.8	22.4	2.4	11.7	
		2000	20.0	38.2	14.3	2.0	25.5	

.

Table 4.6. Continued.

Source	Ref. No.	Year	Coal	0:1 1	Gas	Hydro	Nuclear
RANGE :							
		196 0	23.2	41.5	31.4	3.9	-
		1965	22.0	44.0	30.0	4.0	0.0
		1 97 0	18.0-20.1	43.0-44.8	31.7-33.2	3.7-3.9	0.29-0.3
		1975	17.2-18.2	41.0-43.7	31.4-32.4	3.2-4.4	3.2- 5.5
		198 0	16.0-21.8	40.8-44.8	23.2-31.5	3.0-4.2	4.0-12.0
		1985	16.6-20.7	35.6-47.2	17.0-29.6	2.4-3.7	11.7-17.2
		1990	13.2	35.7	25.5	2.6	23.0
		2000	13.3-36.5	34.2-45.6	14.3-28.9	1.5-3.1	14.1-25.8
EAN:							
		1960	23.2	41.5	31.4	3.9	-
		1965	22.0	44.0	30.0	4.0	0.0
		1970	19.7	43.6	32.7	3.7	0.3
		1975	17.9	42.0	31.9	3.8	4.4
		198 0	20.2	40.1	28.2	3.5	8.0
		1985	18.0	39.2	23.8	2.8	16.2
		1990	17.9	32.9	23.6	2.6	23.0
		2000	17.6	31.0	23.1	2.4	25.9

.

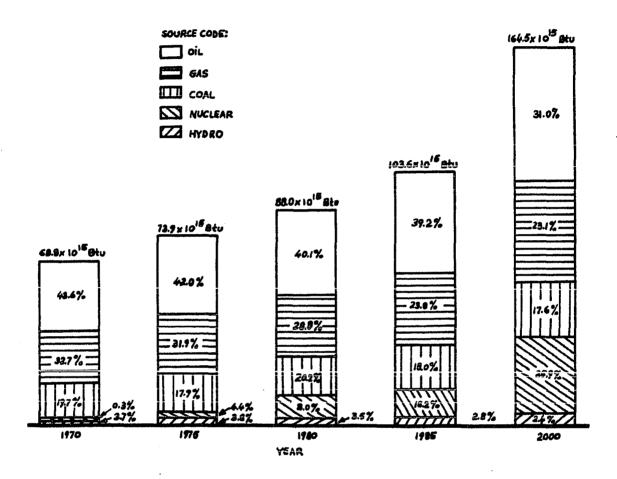


Figure 4.3. Projected U. S. consumption of energy resources by major sources

•

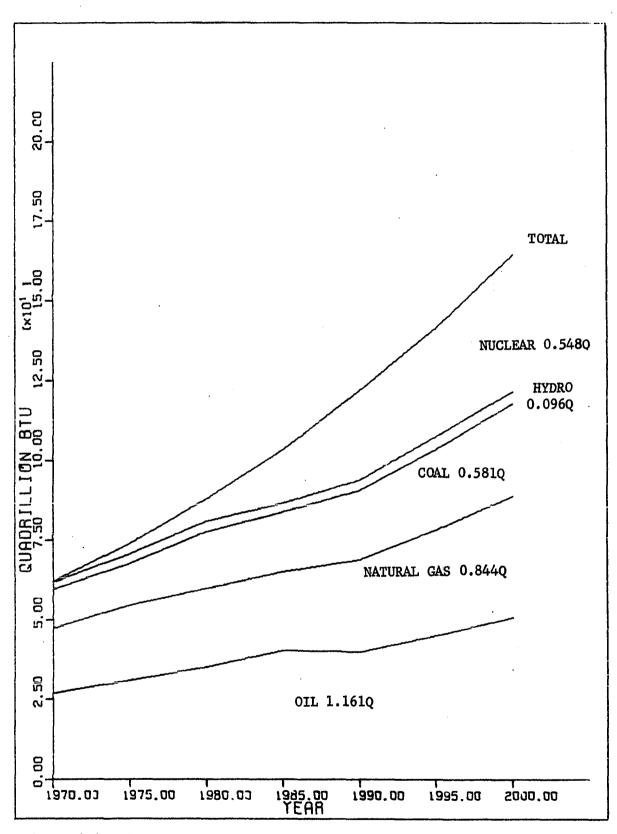


Figure 4.4. Projected U. S. consumption of energy resources by major sources

to estimate future fuel mix percentages. The following polynomial regression models proved to be the best with correlation coefficients of 0.850, 0.900, 0.960, 0.957 and 0.995 for coal, gas, oil, hydro and nuclear, respectively.

IFC =
$$23.885 - 0.512y + 0.0163y^2 - 0.00018y^3 + e$$
 (4.1)

$$TFC = 29.730 + 0.748y - 0.058y^{2} + 0.00087y^{3} + e \qquad (4.2)$$

$$\text{TFC} = 40./92 + 0.//8y - 0.052y + 0.006/y + e \qquad (4.3)$$
$$\text{TFC} = 3.800 \pm 0.067y = 0.006y^2 \pm 0.00009y^3 \pm c \qquad (4.4)$$

$$TFC = 0.689 - 0.142y + 0.110y^2 - 0.0025y^3 + e$$
 (4.5)

The resultant "surprise-free forecast", shown in Figure 4.4, is an average fuel forecast to the year 2000. The market percentages which correspond to the figure are shown in Table 4.7, as is the total energy consumption forecast which was developed in Chapter III. Coal provides a declining percentage of the total fuel requirement in this average forecast. Gas and oil percentages exhibit more modest declines, and the nuclear energy percentage increases dramatically to 26 percent of total use in the year 20 2000.

Coal 011 Hydro Nuc lear Year Energy Gas Consumption (10¹⁵ Btu) (%) (%) (%) (%) (%) 1970 33.0 43.0 3.7 0.3 68.8 20.0 9.0 1980 88.0 18.2 29.2 40.4 3.2 1990 122.0 15.7 26.2 37.2 2.6 18.3 34.7 2.5 26.0 2000 164.5 13.2 23.6

Table 4.7. Future fuel mix estimations, in percent

By integration of the fuel curves in Figure 4.4 from 1970 to the year 2000, using the computer program given in Appendix D, the projected energy supply of each fuel can be obtained for this period. The calculated values are shown on Figure 4.4 in units of Q, which is equal to 10^{18} Btu. They are also shown in Table 4.8 in 10^{18} Btu. Assuming domestic oil and gas production will remain constant, the domestic fossil fuel supply is estimated for the period of 1970 to 2000, and is shown in Table 4.8 (18). The balance of the oil demand is assumed to be met by imports, while the balance of gas demand either is met by imports or after 1980 is replaced by the synthetic gas from coal, which is called syngas. This syngas production after 1980 could possibly increase the demand for coal by 0.1×10^{18} Btu (18).

Fuel Type	Domestic Supply (10 ¹⁸ Btu)	Imported Supply (10 ¹⁸ Btu)	Consumption (10 ¹⁸ Btu)
Coal	0.581 + 0.100		0.681
0 i.1	0.591	0.570	1.161
Gas	0.536	0.208	0.744
Hydro	0.096	-	0.096
Nuclear	0.548	-	0.548
Total	2.452	0.778	3.230

Table 4.8. Projected fuel supply for the U.S. for the period of 1970 to 2000

Table 4.9 shows the estimated fossil fuel inventory for the U.S. in the year 2000, which is based on resources and forecasted comsumption.

Fuel Type	Initial Resources (10 ¹⁸ Btu)	Consumption 1850-1970 (10 ¹⁸ Btu)	Projected Consumption 10 ¹⁸ Btu)	Inventory in the year 2000 (10 ¹⁸ Btu)	Depleted (%)
Coa1	38.0	1.07	0.681	36.249	4.60
0i1	2.8	0.68	0.591	1.529	45.39
Gas	1.7	0.39	0.536	0.774	45.53

Table 4.9. The U. S. fossil fuel inventory in the year 2000

As is evident in Table 4.9, the coal supply by the year 2000 will scarcely have been dented, while the original oil resource base will be half depleted; the presently estimated recoverable oil resources will be totally depleted, and the recoverable gas resources will be 60 percent depleted. In summary, the "premium" fuels which presently supply over three-fourths of the U. S. energy needs will be virtually exhausted by the year 2000. D. The Impact of Advanced Technology

Today, the great bulk of our electric energy demand is met by converting kinetic (mechanical) energy into electrical energy in an engine with rotating or reciprocating parts, such as are associated with turbines, dynamos, and combustion engines. Most of the kinetic energy is in turn derived by conversion from chemical energy, through combustion. Recently, there has been rising interest in and much research concerning direct conversion of kinetic energy to electric energy, bypassing the intermediate step of mechanical energy. Table 4.10 shows the different types of energy and their interrelationships (16).

Research and development (R & D) on promising alternate energy sources and conversion technologies may develop practical substitutes for fossil and nuclear fuels or supplementary energy sources. Some of the new technologies will be discussed in terms of the primary energy sources with which they are associated: coal, nuclear fission, geothermal, oil, nuclear fusion, and solar. These techniques must be considered possible alternatives, not certainties.

1. Coal

Presently, coal is the major fuel used by utilities. Domestic coal reserves are significantly larger than the reserves of any other fossil fuel. The problems created by coal are primarily environmental. Since most of the coal in the U.S. contains over 1 percent sulfur (103), techniques are needed to desulfurize it so that it can be a clean energy source. The Clean Air Act of 1970 authorizes the Environmental Protection

From To	Electromagnetic	Chemical	Nuc lear	Therma 1	Kinetic (Mechanical)	Electrical
Electro- magnetic		Chemilumi- nescense	Gamma reactions	Thermal radiation	Accelerating charge (cyclotron) Phospher	Electro- magnetic Electrolumi- nescense
Chemical	Photosynthesis		Radiation catalysis Ionization	Boiling (water/steam) Dissociation	Dissociation by radiolysis	Electrolysis (aluminum production)
Nuclear	Gamma-neutron reactions	Unknown		Unknown	Unknown	Unknown
Thermal	Solar absorber	Combustion	Fission Fusion		Friction	Resistance- heating

Table 4.10. Continued.

From To	Electromagnetic	Chemical	Nuclear	Thermal	Kinetic (Mechanical)	Electrical
Kinetic (Mechanical)	Radiometer	Muscle	Radioactivity	Thermal expansion (turbines) Internal combustion (engines		Motors Electro- striction (Sonar transmitter)
Electrical Electrical	Photo- electricity Radio antenna Solar cell	Fuel cell Batteries	Nuclear battery	Thermo- electricity Thermoionics Thermo- magnetism Ferro- electricity	MHD Conventional generator	

Agency (EPA) to set maximum allowable sulfur oxide emission levels for coal burning electric power plants (46). Coal mining will probably be prohibited in some places only by land use restrictions. This makes it even more essential that the most accessible coal be delivered for use in energy production.

Utilities are presently testing about 13 stack gas desulfurization techniques. One or more of them will probably be commercially available by 1980 (46, 104, 105). Add on sulfur removal equipment probably will be of only limited value in the long run, as it fails to optimize the whole system. Some of the other processes being studied will probably reduce power plant thermal efficiency, and still others create problems with solid or liquid waste disposal (106).

One way to control pollution at ground level is to install very tall stacks. Tall stacks, here defined as stacks over 500 feet high, do not reduce overall emission, but do help disperse the effluent over a wider area. Peak ground level concentrations from the tall stacks are usually noticeable at lower levels than concentrations from short stacks. The trend toward larger power plants makes construction of tall stacks more feasible, but it also causes an increase in total emissions. More research is needed to determine the extent to which tall stacks improve local air quality under various meteorological and topographical conditions.

Sulfur can also be removed from the coal in the boiler during combustion. This could possibly be done by a fluidized bed boiler, which would also decrease the capital cost of the central power station (103,

107). Pressurized fluidized bed boilers may be operated commercially by the 1980's.

Another means by which coal would be utilized without producing sulfur pollutants is the process of coal gasification, by which coal would be converted into synthetic pipeline quality gas or low Btu "power gas" for electric power generation (108). Although the power gas could be made less expensively, it could not be economically piped over long distances. It could be used in utility boilers and in combined cycle plants which use a gas turbine in a topping cycle and a conventional steam cycle for bottoming. In this way, coal would provide energy in a cleaner way at a lower cost than if the boiler and steam turbine were used (108, 109). Condenser cooling requirement also would be reduced. If current estimates are correct, this gas turbine technology could, in the future, increase total plant efficiency to nearly 50 percent (110).

Small amounts of low-Btu power gas may be produced commercially by the late 1970's (112). By the 1980's, enough of it will be produced to make a significant contribution to the gas supply. Also, by the 1980's, high-Btu gas produced by coal gasification could be making a modest contribution to the U. S. natural gas supply (46, 111).

Another alternative for use in a combined cycle with the conventional steam boiler is the magnetohydrodynamic (MHD) generator. Numerous experimental MHD generators have been built, and a vigorous research program is underway to make them commercially feasible (114). The first application of the MHD to increase the efficiency of energy conversion will be in combination with conventional fossil fuel steam plants. The

overall plant efficiency of such a combination could be as high as 60 percent, thus reducing waste heat twice as much as today's most efficient plants (113). The MHD generator has some characteristics which would possibly make it a desirable peaking unit. For example, it takes several hours to bring a fossil fuel or nuclear steam plant from a standstill to full capacity; an MHD peaking plant can do it in five seconds (106, 115). Research supported by the Edison Electric Institute (EEI) is being conducted to develop a single cycle MHD peaking unit which might possibly be used for a base-load design. However, there is some doubt as to whether the MHD generator will ever be a major source in this country (106).

Fuel cells present another possibility for the future utilization of fossil fuels. They convert stored chemical energy directly to electricity, skipping even the production of heat as an intermediate step. Present day fuel cells can operate at higher efficiencies than conventional fossil fuel or nuclear power plants. They operate on natural gas or syngas. Further development to reduce capital costs could produce substation size (10-20 MW) fuel cells for peaking power, using natural or synthetic gas (79, 114). The advantages of the fuel cells are many: they are clean and efficient; they operate quietly; they have a low space requirement, and have no need for water cooling, which makes it feasible to locate them at load centers (117). In this application, they would also reduce transmission system requirements. However, the natural gas shortage and anticipated high cost for substitutes will probably limit their use in electric power production to production of peaking energy (106).

2. Nuclear fission

Presently, nuclear reactors are not very efficient. Their efficiency is generally 32 to 33 percent, with the exception of the HTGR, which operates at an efficiency of 37 to 38 percent. Breeder reactors convert fertile isotopes into fissionable isotopes. In this way, the proportion of the nuclear fuel that is useful for energy production is vastly increased, which enlarges the energy resource base. In addition, the thermal efficiency of nuclear breeder reactors is about 40 percent, which is higher than that of today's light water reactors (93).

The LMFBR demonstration plant is scheduled to be completed in 1980 (60, 98). The 1980's may see the first LMFBR and possibly other breeders in commercial operation. If these are successful, there could be many commercial breeders in the 1990's, a situation which would fit well into a coordinated nuclear energy program using uranium resources to their maximum potential.

3. Geothermal energy

Heat from the earth's molten core and from chemical and nuclear reactions in the crust is carried to the surface by means of conduction, volcances, or hot springs. Under some circumstances, underground water, trapped in porcus rock formations, is heated to extremely high temperatures by this geothermal energy. There are at least 1000 known hot springs in the U. S. (118-121). However, at the present time, there is only one geothermal power plant operating in the U. S. It is located north of San Francisco and is owned by the Pacific Gas and Electric Company. It has six generating units with a total capacity of 192 MW,

using saturated steam. The ultimate power capacity of the geysers at this location may be as high as 1000 MW (121). The potential contribution of geothermal energy to the total energy supply will be very small (121). Estimates of total U. S. geothermal capacity range from 30,000 to 100,000 MW (118). These estimates assume full utilization of the potential at locations where steam or hot water are visible and near to the surface. About 85 percent of such locations are in the West (120).

The AEC's plowshare concept (120), which is still under study, could open an almost infinite supply of geothermal energy by tapping the vast heat in the hot rock deep in the earth. The hot rock would be fractured by small underground nuclear explosions. Then, water would be pumped into the fractured area, wherein it would become superheated. This superheated steam would rise to the surface where it could be used to drive turbines and thereby produce electric power. The condensed steam would be recycled back into the hot rock area. Hot rock, at the necessary depth and temperature, exists in many places in the U. S., most of which are in mountainous areas.

Conventional geothermal resources (steam and hot water) will probably be utilized as much as is advantageous economically without creating environmental problems. This will be possible for the most part in the western states and is unlikely to provide a large proportion of the future U. S. energy supply.

4. 0il

The U.S. oil supply is very limited, compared to the world's oil supply. The world oil supply is estimated to be 1,350 to 2,100 x 10^9

barrels, while the U. S. has about one-tenth of this amount (88). Within the bounds of any government restrictions on oil imports, the U. S. can import oil, particularly from the Middle East, where nearly one-third of the world's oil is located (86, 122). In 1971, the U. S. imported 28 percent of its oil requirement, partly because it could be imported more cheaply than it could be produced (87). The U. S. will very likely increase its dependence on foreign oil in the near future, at least to some extent.

Oil can also be produced from nonpetroleum fossil fuels like coal, tar sands, and oil shale. There are massive oil shale deposits in Colorado, Utah, and Wyoming. There are an estimated 600 billion barrels of raw oil contained in rock which has at least 25 gallons of oil in each ton. Much of this rock is on federally-owned land (10). This 600 billion barrels is approximately equivalent to three times the present U. S. petroleum resources. Heat at high temperatures is needed to separate the kerogen (oil) from the rock. The technology to do this has been developed by the U. S. Bureau of Mines and a number of companies. However, the process is an expensive one. The disposal of the spent shale after retorting also presents a problem. More research is needed to determine whether oil shale can ever be a practical commercial source of oil.

There are vast tar sands resources in Alberta (Canada) from which oil is already being produced. In contrast to the size of oil shale resources, U. S. tar sand resources are small, with less potential of contributing to the oil supply.

Obtaining oil from coal presents a greater technical challenge than does extracting it from shale. However, more oil can be obtained from coal than from shale and, consequently, there is less disposal problem. Research concerning the production of oil from coal is under way at a pilot plant at Cresap, West Virginia, which was built in 1967 with funds from the Office of Coal Research (103). The Gulf Oil Corporation is also studying solvent refining of coal, whereby a low sulfur, low ash liquid fuel for utility boilers could be produced (103, 123).

5. Fusion

Presently, two processes by which nuclear fusion can be used to produce power are being studied. One utilizes laser-ignited microbombs, and the other, magnetic confinement of an ultra-hot plasma. However, probably neither will be used for producing commercial power before the year 2000 (124, 125).

It has not yet been shown that nuclear fusion is scientifically feasible. One of the goals of the R & D Task Force of the Edison Electric Institute is to demonstrate such feasibility. Many scientists believe that fusion will be available during this decade (125). Nuclear fusion occurs when an atom of deuterium merges at very high temperatures (100 million degrees C.) with an atom of tritium, or when two deuterium atoms merge to form a helium atom in process releasing a great amount of heat (126). Both deuterium and tritium are isotopes of hydrogen. Deuterium is not scarce, but naturally, comprises about one part per 6,200 of water. Methods of separating deuterium from water are well-developed. Tritium,

on the other hand, is very scarce and very expensive, as well as radioactive. A deuterium-tritium (D-T) fusion reactor, to be serviceable, must breed tritium, which requires a lithium-6 blanket. Neutron bombardment causes the lithium-6 to breed tritium. Both lithium and deuterium are consumed in the process. Hence, the amount of energy that can be produced by means of the D-T reaction is limited by the world's lithium supply. Because of this limitation, the energy production potential of the D-T reaction is little more than that of U. S. fossil fuels (125).

Because no raw materials are consumed, the Deuterium-Deuterium (D-D) reaction can potentially provide an infinite amount of energy. The D-D reaction is technically more difficult to induce than the D-T reaction because it proceeds at higher temperatures. Another drawback is that this reaction produces radioactive tritium, which would create a disposal problem (125). There would, of course, be no such disposal problem with a D-T reactor. One advantage of the D-D reaction is that it produces high velocity charged particles called protons, while the D-T reaction produces energetic neutrons (126). Because of this, the energy produced by the D-D reaction may be directly convertible to electricity, which the energy produced by the D-T reaction would not be. This direct conversion would make possible the elimination of the Carnot cycle, which decreases plant thermal efficiency.

Fusion reactors utilizing magnetic confinement will very likely be housed in huge central stations. Units could very likely have capacities of at least 1,000 MW (126) and probably up to 10,000 MW (127). Fusion reactors would be safer and would operate (up to 60 percent) more effi-

ciently than fission reactors (126, 127). The laser fusion reactor could have a capacity much less than 1000 MW, about 100 MW. It would be just as safe and could be operated only when needed (124).

If commercial fusion reactors are to be developed, the necessary research will cost billions of dollars. The U.S. will undoubtedly make this investment, if indeed the process is shown to be scientifically feasible. Prototype fusion reactors may be in operation by the year 2000 or the early part of the 21st century.

6. Solar energy

The amount of solar energy which radiates to the U. S. is hundreds of times as much energy as is consumed. Based on the U. S. annual average solar incidence of about 1400 Btu per square foot day, the continental U. S. intercepts, annually, about 600 times the 1970 energy consumption of 69×10^{15} Btu (10). However, the energy is scattered and is not supplied continually. There is none supplied at night and very little on cloudy days. A method to cheaply convert solar energy into another, more useful form of energy, and a method to store that energy are needed. Various solar conversion processes have been proposed, but none has much potential for producing a major amount of energy.

Peter Glaser (47, 124) was the first to produce a synchronous orbiting satellite with an array of solar cells, which would "capture" solar energy. The solar energy would then be converted to microwave energy, which would continuously be transmitted to a receiver on earth, where the microwave energy would be converted to electricity.

A solar farm was suggested by Aden and Marjorie Meine (10, 127, 128).

Solar radiation would be entrapped by specially designed thin films and transferred to liquid sodium. Then, by means of an exchange mechanism, the heat would be conveyed to a secondary water cycle to be used for conventional steam generation. These solar farms could be 25-30 percent efficient. One major drawback is that the films for collecting the solar energy would require exceedingly large land areas. Also, if there were no way to store the energy, the supply would vary with the weather.

It may sometime be feasible to install flat collectors which convert solar energy to electrical energy on rooftops and similar surfaces (128). However, this will not be practical until solar cells are sharply reduced in price and a method is developed to store the energy.

Solar space heating has already been tested. In this system, solar heat is transferred from collectors on a roof to water or an air stream, and into a water tank where it is stored. Houses can be economically heated with such a system in certain sunny areas where fuel is expensive (10). However, the house has to be designed with solar heating in mind, and even so, supplemental heating will be necessary. Solar home heating will no doubt be used in the future in certain areas.

A 1000 MW (24-hr. average) power plant operating in a 1400 Btu/ft² per day solar climate with an efficiency of 5 percent would require 37 square miles of ground coverage, compared with a few hundred acres needed for a nuclear or fossil-fuel plant (10). Therefore, in practical terms, there is considerable doubt that solar energy will replace present power sources in the future.

E. The Limits to Energy Growth

As discussed in Chapter III, it is forecasted that future energy consumption will be vastly greater than present consumption. However, there are physical factors which may make such growth in the energy supply impossible - the availability of adequate resources, possible excessive pollution, and undesirable global climatic effects which could be created.

1. <u>Resources</u>

The energy resource base is expected to increase to well over 10000 from today's level of 550 in the next several decades (16). According to the projection discussed in Chapter III, 3.23×10^{18} Btu total energy will be used by the year 2000, and about 60 x 10^{18} Btu used by 2100 (See Table 3.20). Hence, fuel resources will presumably be adequate through and beyond that time.

Some types of energy production may be limited by the availability of nonfuel resources. For instance, the energy production potential of D-T fusion is limited by the lithium supply (125). A deficit of platinum may limit fuel cell development unless another usable catalyst is found (42). Some of these limitations can be overcome, though. It may be possible, for example, to recycle rare resources. Since indications are that there are more than adequate potential resources to meet projected demand, it is unlikely that energy growth in the next century will be impeded by resource limitations.

2. Pollution

Pollution is unavoidable, as it is produced by most industrial processes. Production of enormous amounts of solid waste is a problem in a society such as this which has a "throw away" mentality and finds "no-deposit-no-return" packages most economical. Pollution will undoubtedly increase exponentially as long as industrial and energy production do so, although this cannot continue indefinitely, as there is a point beyond which more pollution would be intolerable. The crux of the problem is economic. It is costly to eliminate or dispose of pollution produced as a by-product of an industrial process. The least expensive way to deal with pollution, the one which has been used in the past, is to not deal with it at all. But, it is possible to design industrial processes which produce essentially no pollution, excepting waste heat, if the public is willing to pay the price.

Energy production creates basically the same types of pollution problems as do other industrial processes. The level of pollution which the environment can safely tolerate must be determined. The industry must find practical methods to collect, recycle, or safely dispose of pollutants. All this may at times be technically challenging, but it no doubt is possible, although probably expensive. Hence, pollution control is unlikely to impede growth of the energy supply, though it will make energy production more costly.

3. <u>Climatic effects</u>

The sun's energy supports the life cycle of the earth. Variations in the amount of radiant energy from time to time and from region to

region result in different and changing atmospheric conditions, seasons, and climatic conditions. If man's energy production ultimately were to produce an amount of waste heat that was significant compared to the amount radiated from the sun, it certainly would seriously alter climatic conditions. For this reason, energy production cannot increase indefinitely. However, there will probably be no climatic problem until the amount of heat added to the atmosphere is equivalent to about 1 percent of that radiated from the sun, though this is only a speculation (10, 42).

Utilization of most forms of energy ultimately produces waste heat, which increases the thermal burden on the biosphere. This is not true for an invariant energy resource like hydropower, because it basically circulates through the terrestrial water cycle. Unfortunately, hydropower will never be able to meet a major portion of energy needs. Solar energy could also be an invariant energy resource if either the solar cells or the converters were located on the earth's surface. The Glaser approach to solar energy utilization does not include this future. All other means of energy utilization, other than hydropower and solar conversion are noninvariant and so would result in the release of waste heat into the environment. This is even true of geothermal energy, which originates in the earth itself. This being the case, it is possible, to evaluate the overall thermal situation in the U.S. An average of 1400 Btu/ft² of solar energy radiates to the U.S. land area each day (10), which is equivalent to 51×10^{18} Btu per year. According to the energy forecast discussed in Chapter III, Section G, the rate of growth of Btu per capita will be 2 percent by the year 2040, and almost 0.2

percent by the year 2100. The energy, naturally, will not be equally distributed, so the thermal load will be greater in some areas than in others. Even so, thermal pollution is unlikely to cause global climatic problems even as far in the future as the year 2100, largely because over two-thirds of the earth's surface is water. Even if man generates heat at a rate of 3 percent of the solar input on all land areas, the overall worldwide heat generation rate would still be 1 percent. The northeastern region of the U. S., which consumes 40 percent of the nation's energy, locally produces waste heat at a level equivalent to 1 percent of that provided by the sun. The 4,000 square-mile Los Angeles basin area suffers no ill climatic effects, even though it generates heat at a 5 percent level (129).

There is much concern about the long range effect that human activities may have on the earth's temperature and thereby on its climate and atmospheric heat balance (50). The overall problem is complex and difficult to quantify. There are at least five ways in which man could change the earth's temperature, some of which are not directly related to energy utilization.

1. Fossil fuel combustion produces CO_2 and therefore increases the CO_2 concentration in the atmosphere. This CO_2 blocks the longwave radiation from the earth's surface to space, and so raises the average temperature by this "greenhouse effect." If the entire U. S. fossil fuel supply were eventually burned for fuel, the atmospheric CO_2 concentration could double, thereby possibly increasing the average earth temperature by 2.4 degrees C.

- Combustion of fossil or nuclear fuel releases heat directly into the atmosphere, thereby raising the earth's temperature.
- 3. Aerosols produced by industry, automobiles, etc., make the atmosphere less pervious to incoming solar radiation, which tends to lower the earth's temperature.
- 4. Incorrect agricultural procedures produce dust, which has the same effect as do aerosols.
- 5. Urbanization and deforestation on the earth increase the proportion of incoming solar radiation that is reflected outward again as soon as it hits the earth's surface (albedo). This tends to decrease the earth's temperature.

The long range effect of the interaction of these factors on the earth's temperature is still a matter of speculation (50). Until further research is completed, the probable impact of growing energy consumption on global climatic conditions will remain uncertain.

F. Fuel Supply Forecast for the 21st Century

According to the forecast presented in Chapter III, Section G, the energy requirement in the decades after the year 2000 will be enormous, as shown by Table 4.11.

Table 4.11. Forecasted U. S. energy demand for the 21st century

 Ten-Year Interval	(10 ¹⁸ Btu)	
2000-2010	1.912825	
2010-2020	2.563244	

Table 4.11. Continued.

Ten-Year Interval	(10 ¹⁸ Btu)	
2020-2030	3.395954	
2030-2040	4.358086	
2040-2050	5.326945	
2050-2060	6.297757	
2060-2070	7.200201	
2070-2080	7.890642	
2080-2090	8.376136	
2090-2100	8.673228	
Total	55.995018	

In the first decade alone, about 1.913×10^{18} Btu will be required. Part of this may be provided by oil - some of which will be imported, and some of which will certainly be kerogen from shale oil. Domestic oil will make only a minor contribution as it will be almost depleted.

Domestic natural gas will also be almost totally depleted by the year 2000, as shown in Table 4.9. However, Alaska pipeline gas or LNG from the Middle East or Africa will still be imported. Syngas from coal, although expensive, will be available. Hence, gas will be used only for purposes which merit the high cost.

Coal resources will be only slightly depleted by the year 2000 coal equivalent to 36 x 10^{18} Btu will still be available. Because breeder reactors will be in operation by that time, optimum utilization of uranium will be possible, and, therefore, uranium energy resources will be immense. By the first decade of the 21st century, prototype fusion reactors may be in operation, hopefully paving the way for commercial plants in the second decade. Solar and geothermal sources will be utilized to a relatively small degree. Thus, in the years from 2000 to 2020, much of the U.S. energy need will have to be met by coal and uranium. The degree to which the various forms of nuclear power and coal contribute to the energy supply will depend on their comparative costs.

The cost of both nuclear power and coal will be determined primarily by the necessary capital investment, some of which will be for pollution control equipment. Both uranium and coal fairly certainly will be major sources of energy in the early part of the 21st century.

Some scientists believe that nuclear fusion will be a viable energy source by the yeat 2000 (126), which may be the case if the necessary research and development are adequately funded. But, since research effort must be allocated among a number of important projects, the first commercial fusion plants will probably not be in operation until the second decade of the 21st century. Hydropower will never be more than 4×10^{15} Btu per year because of limited number of potential sites and water capacity.

Because nuclear power will supply an increasing proportion of the energy supply after the year 2000, growth of electric power's share of the energy market will be accelerated. Electricity's share of the market will keep growing until it reaches 85 percent and the market is saturated.

V. DEVELOPMENT OF AN ELECTRICAL ENERGY MODEL FOR IOWA UTILITIES

A. Introduction

Recent developments in the energy field indicate that the United States cannot simultaneously continue its rapid growth in energy usage, maintain low energy prices, protect the environment, and remain relatively independent of foreign suppliers. Because changes in the price availability of electrical energy affects everybody and the whole economy, a need for the development of an electrical energy model is apparent.

In order to evaluate rapidly the consequences of different proposed energy policies, a computerized electrical energy model has been developed in this study. The necessary mechanism is built into the model in order to capture accurately the dynamics of changes. ^Furthermore, if one wishes to answer the many "what if" questions, the computerized model has a consistent framework within which to investigate a wide variety of policies rapidly and economically.

The model can be used to investigate the impact of a wide range of factors on the regional energy situation. The following list indicates the type of factors that can be considered: new technology, environmental restrictions, fuel import quotas, fuel availability, energy conservation measures, and price increases and decreases.

The model is basically built for the electric power industry to minimize the cost of energy used for electric generation through optimum allocation of various fuel mixes over a period of n years, where the energy is subject to a large number of physical and environmental constraints.

In order to keep the size of the model within reasonable bounds (because of a limited computer budget, difficulties involved in obtaining the necessary coefficients, and a time limitation) the model is applied to the State of Iowa rather than to the whole country. Thus, Iowa, 95 percent of which is electrified by a group of utilities referred to here as the "Iowa Pool",¹ was chosen as the region for the application of the model (134).

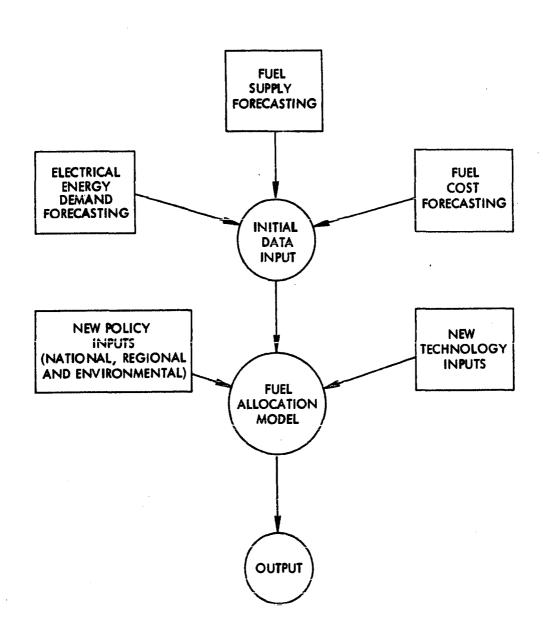
B. Structure of the Model

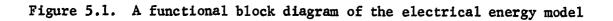
1. General discussion

One approach to analyzing complex energy problems which are related to the electric power industry is to use mathematical "models". By means of a model, one attempts to represent the interactions between supply, demand, prices, and other variables through mathematical relationships. In a general sense a model can be defined as an intellectual construction bearing some relation to reality, which can be discussed and analyzed in and of itself (135).

The electrical energy model developed in this study is a useful tool for minimizing overall fuel costs by optimum allocation of various fuel mixes among generating units, not only for the Iowa Pool as a whole, but also for the individual utilities. It is applied to the Pool under the assumption that the Pool members will act as a united group to minimize their overall fuel costs.

The name "Iowa Pool" is not intended to imply any official consortium of companies; it is merely a convenient name used for the identified group of Iowa utilities.


A functional block diagram of the electrical energy model is shown in Figure 5.1. It consists of a main fuel allocation model (FAM) and three forecasting submodels, namely: the fuel supply forecasting submodel, the fuel cost forecasting submodel, and the electrical energy demand forecasting submodel. The initial data input is composed of information on all of the submodels.


Additional inputs concerning new technology and policy will modify the parameters within the FAM. The FAM uses the mathematical techniques of Linear Programming (LP) in order to obtain the optimum fuel mixes which minimize the fuel costs of the pool or an individual company.

The electrical energy demand forecasting submodel projects the electrical energy demands of the region into the future for each company and/or for the Iowa Pool in total. A computer subroutine program was prepared to project the future electrical energy demands. This subroutine is presented in Appendix E.

The fuel supply forecast gives the future fuel supply for each fuel, and the fuel cost forecast provides the future costs for each type of fuel. These forecasts have been provided by the individual companies in light of their long-term contracts with the fuel supply companies.

The purpose of the new technology inputs is to investigate the impact of future major developments with respect to electrical energy supply and demand. From new technologies under investigation, input constraints to the LP on supply and demand can be developed to reflect the new technologies' effect on consumption over the appropriate time period. The specification of substitutions and price constraints can provide addi-

tional means of reflecting the effects of new technologies.

The investigation of national, regional, and environmental policies also requires manipulation of the FAM parameter inputs. From the new policies under investigation, LP input constraints on supply, demand, and cost can be modified.

2. Mathematical model

As explained before, the FAM uses a mathematical technique called Linear Programming. The LP is a mathematical process which seeks to minimize or maximize a linear function, called the objective function, in which the variables are subject to linear constraints.

The objective function takes the linear form

$$Z = \sum_{i=1}^{n} C_i X_i$$
(5.1)

where Z is the value to be optimized. In our model, Z is the total fuel cost which is to be minimized. The X_i represents n unknown quantities, and the C_i are the costs associated with one unit of X_i . The C_i may be positive or negative, whereas the X_i must be defined in such a manner as to assume only positive values.

The constraints, or restrictions, are limitations on the values that the unknowns may assume and must be a linear combination of the unknowns. The constraints assume the form

$$n \qquad \sum_{i=1}^{n} j_{i} x_{i} = , \geq , \leq b \qquad (5.2)$$
$$x_{i} \geq 0$$

or

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = , \ge , \le b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = , \ge , \le b_{2}$$

$$\vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{m1}x_{n} = , \ge , \le b_{m}$$

$$x_{1} \ge 0, x_{2} \ge 0, \dots, x_{n} \ge 0 \quad \text{where } j = 1, 2, \dots, m$$

$$i = 1, 2, \dots, n$$

where there are m constraints of which any number may be equalities or inequalities. Also, the number of constraints, m, may be greater than, less than, or equal to the number of unknowns, n. The coefficients of the unknowns, a_{ji} , may be positive, negative, or zero, but must be constants. The b_j are also constants, which may be positive, negative, or zero. The constraints in our model, as formulated, express the energy requirements, the generation limitations of specific units, and other restrictions which are described in the following sections.

The constraints define a region of solution feasibility in n dimensional space. The optimum solution is the point within this space whose x_i values minimize or maximize the objective function Z. In general, the solutions obtained are real and positive.

In our model the objective function is used to find the minimum overall fuel costs of the Iowa Pool or of an individual utility by optimum allocation of various fuel mixes among generating units over a period of n years. Therefore, the objective function takes the linear form

$$Z = \sum_{k=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N}$$

where $i = 1, 2, ..., N_u$ $j = 1, 2, ..., N_f$ $k = 1, 2, ..., N_v$

where i gives the serial number of utilities in the Iowa Pool in order to represent them in the computations. There are nine electrical utilities in the Pool, therefore $N_u = 9$. The serial numbers of the companies are given according to the code which is shown in Table 5.1.

Table 5.2 and Figure 5.2 show the annual gross electrical energy requirement forecast for the Iowa Pool according to 1975 MARCA report for the period of 1975 - 1985 (137). Figure 5.3 represents the annual gross electrical energy requirement forecast for one company (IPL) for the years from 1975 to 1985. These nine utility companies account for about 95 percent of the electricity generated in the State of Iowa. The remaining 5 percent of the electricity is produced by municipal utilities (134). The index j represents the serial number of the generating units of each company of the Pool, where generating units may use different types of fuel, such as oil, coal, natural gas, and nuclear fuel, to produce energy. Because of its very small contribution, hydro is neglected in this study.

Index k represents the number of years which are covered. In our study we covered only the eleven-year period from 1975 through 1985, because of a limited computer budget, difficulties involved in obtaining

Serial Number	Company Name	Code Name
1	Iowa Power and Light	IPL
2	Iowa Southern Utilities	ISU
3	Iowa Public Service	IPS
4	Interstate Power	ISP
5	Iowa Electric Light and Power	IELP
6	Central Iowa Power Cooperative	CIPC
7	Iowa-Illinois Gas and Electric	IIGE
8	Corn Belt Power Cooperative	CPA
9	Eastern Iowa Light and Power Cooperative	EILP

Table 5.1. The serial number of the companies in the Iowa Pool

,

Year	IPL (1)	ISU (2)	IPS (3)	ISP (4)	IELP(CIPC) (5-6)	IIGE (7)	CPA (8)	EILP (9)	Total
1 97 5	4111	1488	2896	3178	4840	3810	1919	285	22,527
1976	4423	1706	3293	3369	5143	4111	2087	300	24,432
1977	4769	1907	3729	3571	5538	4446	2306	325	26,591
1978	5152	2039	4142	3785	5925	4801	2506	360	28,710
1979	5534	2176	4432	4013	6340	518 5	2723	395	30,798
1980	5945	2324	4742	4253	6786	5600	2959	410	33,019
1981	6396	2482	5116	4508	7262	6048	3217	430	35,459
1982	6877	2652	5516	4779	7775	6532	3499	445	38,075
1983	7353	2835	5929	5065	8320	7054	3785	475	40,816
1984	7893	3031	6392	5369	8960	7619	4094	475	43,833
1985	8466	3242	6893	5692	9534	8828	4428	475	46,963

Table 5.2. The annual gross electrical energy requirement of the Iowa Pool in GWh for the years from 1975 to 1985 (137)

.

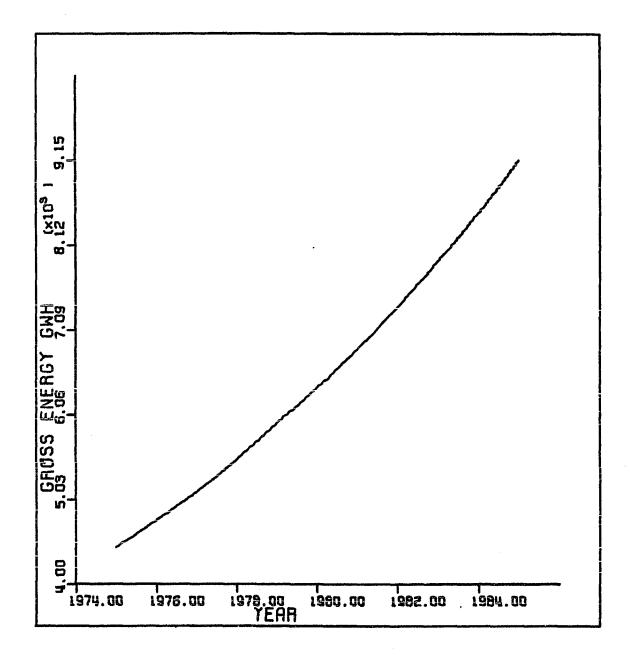


Figure 5.2. The annual gross electrical energy requirement of the Iowa Pool in GWh for the years from 1975 to 1985

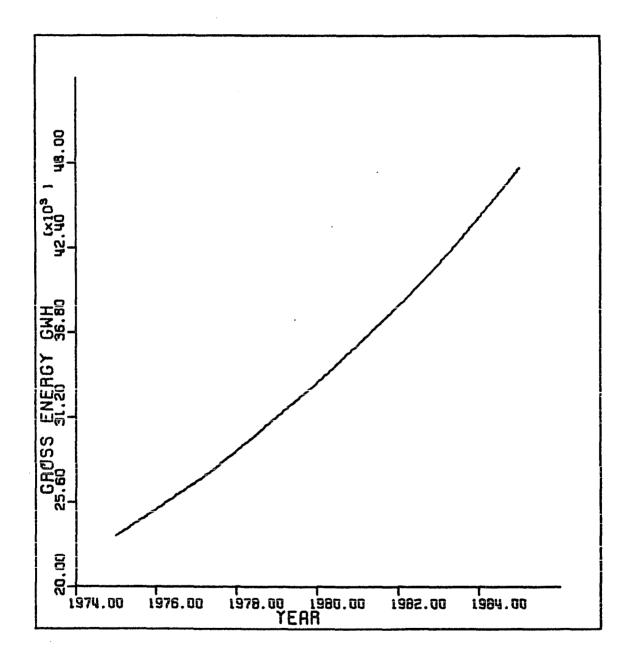


Figure 5.3. The annual gross electrical energy requirement of a single utility company (IPL) for the years 1975 to 1985

the necessary coefficients, and a time limit.

Also define

C_ijk = cost of fuel used to produce electrical energy
 from jth generating unit of the ith utility during
 the kth year in dollars per MBtu.

C^s_{ik} = cost of electrical energy sales by the ith utility during the kth year in dollars per MWh.

Fuel costs of a generating unit are proportional to the inclusive cost of heat and inversely proportional to the thermal efficiency. The cost of heat, in turn, depends on the sources of fuel and the transportation and fuel handling costs, which are themselves affected by the total fuel consumption of the utility companies.

There may be a larger number of physical and environmental restrictions affecting the model in the long run than at the present. For example, the fuel imported for all purposes into the State of Iowa might be restricted by transportation capacity, e.g., rail capacity, barge capacity, etc. The total electric generation might be restricted by the water available to energy generation for cooling purposes in the State of Iowa. Furthermore, the needed transmission line capacity might be restricted by the corridor capacity available for the energy transmission lines. However, in our study, which covers only the eleven-year time period through 1985, we assumed that the above restrictions and many others which might apply were not of great importance; therefore they were neglected. Some of the currently significant physical and environmental restrictions are presented below.

3. Energy requirement restriction

The electrical energy generated by the individual generating units of the Pool plus the electrical energy purchased minus the electrical energy sold by the Pool through out-of-Pool transactions is equal to the annual gross electrical energy demand of the Pool.

$$\begin{array}{c}
 N_{y} \quad N_{f} \quad N_{u} \\
 \Sigma \quad \Sigma \quad \Sigma \\
 k=1 \quad j=1 \quad i=1 \end{array} \quad n_{ij} \quad x \quad F_{ijk} \quad + \begin{array}{c}
 N_{y} \quad N_{u} \\
 \Sigma \quad \Sigma \\
 k=1 \quad i=1 \end{array} \quad k_{1} \quad x \quad P_{ik} \quad - \begin{array}{c}
 N_{y} \quad N_{u} \\
 \Sigma \quad \Sigma \\
 k=1 \quad i=1 \end{array} \quad k_{1} \quad x \quad P_{ik}
 \end{array}$$

$$= \begin{array}{c}
 N_{y} \quad N_{u} \\
 \Sigma \quad \Sigma \\
 k=1 \quad i=1 \end{array} \quad k_{1} \quad x \quad P_{ik} \quad - \begin{array}{c}
 N_{y} \quad N_{u} \\
 x=1 \quad i=1 \end{array} \quad k_{1} \quad x \quad P_{ik}
 \end{array}$$

$$(5.4)$$

$$N_{y} \quad N_{i} \\
 \Sigma \quad \Sigma \quad \Sigma \\
 k=1 \quad i=1 \end{array}$$

$$n_{ij} \quad x \quad F_{ijk} \quad + \begin{array}{c}
 N_{y} \quad N_{u} \\
 \Sigma \quad \Sigma \\
 k=1 \quad i=1 \end{array}$$

$$K_{1} \quad x \quad S_{ik} \quad - \begin{array}{c}
 N_{y} \quad N_{u} \\
 \Sigma \quad \Sigma \\
 k=1 \quad i=1 \end{array}$$

$$K_{i} \quad x \quad S_{ik} \quad - \begin{array}{c}
 N_{y} \quad N_{u} \\
 \Sigma \quad \Sigma \\
 k=1 \quad i=1 \end{array}$$

$$K_{i} \quad x \quad P_{ik} \quad x \quad 8760 \quad x \quad ALF_{ik}$$

$$(5.5)$$

where

n = efficiency of jth generating unit of ith company of the Pool. It can be calculated by using the formula

$$n_{ij} = \frac{(3413 \text{ Btu/kWh}) \times 100}{(\text{Heat rate of the unit Btu/kWh})_{ij}}$$

 $K_1 = 3.413 \text{ MBtu/MWh.}$ It is the heat energy equivalent to 1 MWh of the electrical energy.

- AGE_{ik} = annual gross electrical energy demand of the ith
 utility for the kth year, in which system losses and
 energy uses of the plants themselves are included in
 MWh.
- PD_{ik} = annual peak demand of the ith utility during the kth year.
- ALF_{ik} = annual load factor of the ith utility during the kth year.

8760 = number of hours in a year.

4. Energy capacity restriction

The total electrical energy generated by each individual generating unit of the Fool will not exceed the total maximum available generating capacity of the Fool

or

$$\begin{array}{cccc} {}^{N}y & {}^{N}f & {}^{N}u \\ \Sigma & \Sigma & \Sigma & {}^{n}ij & {}^{x}Fijk \\ k=1 & j=1 & i=1 \end{array}$$

$$\sum_{k=1}^{N_{y}} \sum_{i=1}^{N_{u}} X_{ik} X_$$

or

where

$$AF = K_1 \times K_2 \times (1 - K_3) \times K_4)$$

= an average overall factor.

MAC_{ik} = maximum available generating capacity of the ith utility during the kth year in MW.

C_{ik} = maximum installed generating capacity of the ith utility during the kth year in MW.

- K_2 = an average cruise rating factor. In the electric power industry, the general practice is not to run generating units at their maximum capacity in order to avoid certain operational problems. Throughout this study, K_2 is set equal to 0.9, but any value could be used.
- K₃ = a reserve factor. According to the Mid-Continent Area Realiability Coordination Agreement (MARCA), each utility company shall reserve 15 percent of its generating units'

capacity for reliability purposes. Therefore, K_3 was accepted as equal to 0.15 (137).

K₄ = an average availability factor of a unit. It covers scheduled and unscheduled outage rates of the generating units. In this study, the average plant availability factor was assumed to be 0.964 for fossil fuel burning generating units and 0.900 for nuclear generating units because of lack of data (146).

5. Sulfur emission restriction

The main fossil fuels used for steam electric power generation are bituminous coal, residual oil, and natural gas, each with its own spectrum of air pollutants. Typical emissions of these pollutants are carbon monoxide (CO), oxides of nitrogen (NO_x), oxides of sulfur (SO_x), particulates, and hydrocarbons. In this study, because of a lack of necessary data, the only environmental restriction applied was that of sulfur emission. Other pollution restrictions could be added, however, using the technique used for sulfur emissions.

The oxides of sulfur, principally SO_2 , are released primarily from residual oil and coal plants. The sulfur contained in oil and coal is oxidized to SO_2 , which in turn may be oxidized to SO_3 .

To control sulfur dioxide emission, four approaches are being used, none of which are complete answers to the problem: 1) using coal that naturally has lower sulfur content, 2) removing sulfur from the fuel before it is burned, 3) installing devices to collect sulfur dioxide after the fuel is burned, 4) blending high-sulfur coal with low-sulfur coal in

order to obtain a coal mix which has a permissibly low sulfur content.

Low-sulfur coal (about one percent sulfur as compared to the nominal three percent) is available, especially in Wyoming and Montana, and is being used. However, other industries, especially the metallurgical industry, also show a high demand for this coal. Therefore, it is important to recognize that one-percent-sulfur coal provides only a short-term limited solution to the problem for two reasons: 1) with electrical energy production doubling every ten years, the total emission from increasing quantities of low-sulfur coal will become greater than that now emitted from smaller quantities of higher-sulfur coal; and 2) present U. S. reserves of low-sulfur coal cannot meet total demands indefinitely.

Some sulfur can be removed from coal before burning using existing technology. Sulfur occurs in coal in the pyrite form (FeS₂) and as complex organic compounds. The pyrite form can be removed by washing and grinding, leaving only the organic compounds, which are more difficult to remove. Preliminary results of research supported by the National Air Pollution Control Administration show that the washing technique can be used for about 20 percent of the coal consumed by the utility industry and can reduce the sulfur content to approximately one percent (136).

The process of SO₂ collection after the fuel is burned applies to both coal and residual oil fuels. Of the many collection processes under development, few have reached the successful stage (136).

For power plant applications, there are no existing systems for the control or recovery of the oxides of nitrogen. Presently, power plants are being built with higher stacks, depending on broader dispersal of the

pollutants as the main method of reducing regional concentration. Also, methods are being developed to improve the combustion control and to reduce the fire-box temperature in utility boilers as a means of greatly reducing the production of nitrogen oxides.

Federal proposed performance standards (40 Code of Federal Regulations, Fart 60, Section 43) have been issued for sulfur dioxide emissions from fossil fuel burning steam generators of 250 MBtu per hour or more heat output. The standards state that emissions shall not exceed 0.80 pound per MBtu derived from liquid fossil fuel and 1.2 pound per MBtu derived from solid fossil fuel.

In the State of Iowa these standards have been relaxed, according to the Rules and Regulations of the Air Quality Commission (136). After July 13, 1975, no fossil fuel burning generating units of 250 MBtu per hour or more heat input will be allowed to cause the emission of sulfur dioxide into the atmosphere in an amount greater than six pounds of sulfur dioxide per MBtu of heat input from any solid fuel burning generating unit for any combination of fuels burned. For liquid fuel burning generator units, the emission of sulfur dioxide into the atmosphere in an amount greater than 2.5 pounds of sulfur dioxide per MBtu of heat input is prohibited. After July 31, 1978, the emission of sulfur dioxide into the air will not exceed 5 pounds for any solid fuel burning generating unit.

The demand for a fuel is a function of the price of the fuel and an average cost penalty for meeting sulfur regulations. This demand may be expressed as

 $D = f(R_{j}, ACP_{j})$ j = 1, 2, ..., r

where

D = demand for fuel in MBtu per year.

 R_i = price of fuel j in dollars per MBtu.

 ACP_{i} = average cost penalty for fuel j in dollars per MBtu.

j = index number of competing fuels.

In the case when available fuels have a higher sulfur content, then the real cost of the fuel will be increased by an extra cost of satisfying sulfur regulations. This can be formulated such that

$$TC_{p} = TC_{d} + TC_{sc}$$
(5.9)

where

 TC_p = total cost of satisfying sulfur regulations in dollars. TC_d = total cost of desulfurization in dollars. TC_{sc} = total cost of stack controls in dollars.

where

C_{sc} = cost of stack control of the fuel used by the jth type of generating unit of the ith utility during the kth year in dollars per MBtu.

For the purpose of our study, the restriction on sulfur dioxide emission was formulated such that

$$\sum_{k=1}^{N_{y}} \sum_{j=1}^{N_{f}} \sum_{i=1}^{N_{u}} \sum_{i=1}^{x SP} \sum_{ijk} \sum_{k=1}^{N_{y}} \sum_{j=1}^{N_{f}} \sum_{i=1}^{N_{u}} \sum_{i=1}^{N_{y}} \sum_{i=1}^{N_{f}} \sum_{i=1}^{N_{u}} \sum_{i=1}^{N_{sP}} \sum_{ijk} (5.11)$$

where

SP_ijk = sulfur content of the fuel used by the jth energy
generating unit of the ith utility during the kth year
in pounds.

6. Fuel availability restriction

Fuel availability is an important restriction in long range energy planning. It applies not only to oil and natural gas, but also to the lowsulfur coal supply, which is limited. In general, this restriction can be formulated as

or

$$N_{y} N_{f} N_{u}$$

$$\sum \sum \sum F_{ijk}$$

$$k=1 j=1 i=1 ^{ijk}$$

$$\leq \sum \sum K_{5} \times K_{6} \times (FPIA_{jk} + FITI_{jk})$$
(5.13)

where

- AFEG_{jk} = total available fuel for the jth type energy generating units of the Iowa Pool during the kth year in MBtu.
- $FPIA_{jk}$ = total fuel production in Iowa which can be consumed by the jth type energy generating units in the total region of Iowa during the kth year in MBtu.
- FITI jk = total fuel imports to Iowa which can be consumed by
 the jth type energy generating units in the total
 region of Iowa during the kth year in MBtu.
- K₅ = a per unit electric market factor. Since nine member utilities of the Iowa Pool account for about 95 percent of the electricity generated in the State of of Iowa, this factor is assumed equal to 0.95 (for studies applied to the entire pool).
- K_6 = a per unit fuel consumption factor for each type of fuel for electric generation in the State of Iowa. According to the statistics of the 1975 Iowa Energy Council's Annual Report (134), this factor K_6 is equal to

 $K_6 = 0.692$ for coal $K_6 = 0.203$ for natural gas $K_6 = 0.102$ for fuel oil $K_6 = 1.000$ for nuclear.

Even though the above factors may vary throughout the years, they are, for the purpose of our study, assumed to be constants. They could be easily adjusted, however, if more accurate data becomes available.

Historical and forecasted total fuel consumption for the State of Iowa in 10^{12} Btu, has been calculated using a least square regression analysis of the historical data with a 0.96 correlation coefficient. These results are shown in Table 5.3 and Figure 5.4.

For convenient reference, some nomographs have been developed so that one can calculate the amount of fuel consumed annually by one installed KW of capacity of generating units with various heat rates at plant factors of 0.80, 0.85, and 1.00. These are presented in Appendix G.

7. Annual electrical energy purchases and sales restrictions

The total annual electrical energy purchased and sold, and consequently transmitted between the utilities of the Pool and the out-of-state utilities, shall be restricted by the capacity of tie lines between the Iowa Pool and out-of-State utilities such that

$$\sum_{k=1}^{N_{y}} \sum_{i=1}^{N_{y}} \sum_{k=1}^{N_{y}} \sum_{i=1}^{N_{y}} \sum_{k=1}^{N_{y}} \sum_{i=1}^{N_{y}} \sum_{i=1}^{N_{$$

and

where

TTLC_{ik} = total tie line capacity between the ith utility of the Iowa Pool and out-of-State utilities for the kth year in MWh.

 HISTORI	CAL (138)	FORE	CASTED	
 Year	1012 Btu	Year	10 ¹² Btu	
1953	400.8	1974	878.4	
1954	419.7	1975	901.4	
1955	463.9	1976	924.5	
1956	488.3	1977	947.5	
1957	504.0	1978	970.6	
1958	513.0	1979	993.7	
1959	554.8	1980	1016.7	
1960	554.9	1981	1039.8	
1961	553.3	1982	1062.9	
1962	583.2	1983	1085.9	
1963	599.0	1984	1108.9	
1964	616.0	1985	1132.0	
1965	641.2			
1966	646.6			
1967	701.0			
1968	720.6			
1969	749.1			
1970	810.2			
1971	828.9			
1972	903.5			
1973	866.1			

Table 5.3. Historical and forecasted total fuel consumption for the State of Iowa in 10^{12} Btu

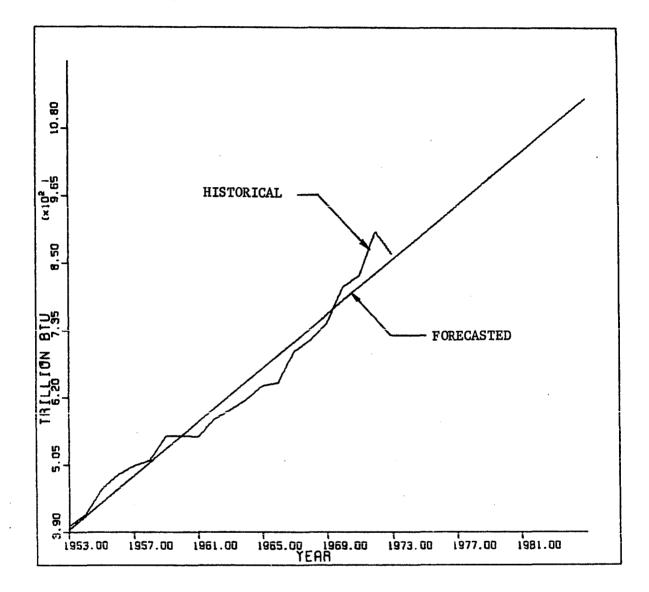


Figure 5.4. Historical and forecasted total fuel consumption for the State of Iowa in 10^{12} Btu

8. General restrictions

There are also some restrictions on the variables as a result of the nature of the linear programming, such as

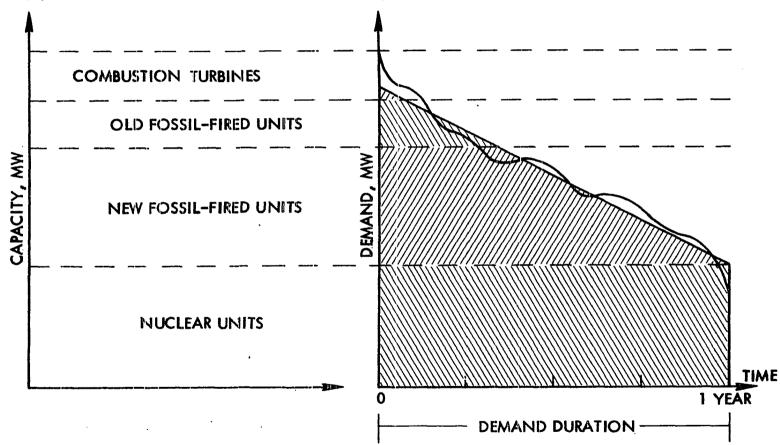
$$F_{ijk} \ge 0$$
 (5.16a)
 $P_{ik} \ge 0$ (5.16b)

$$s_{ik} \ge 0$$
 (5.16c)

In general, the constraint matrix of the program has a simple form. The coefficients are mostly zeros and ones, but they do not fall into regular patterns because each utility has a different number of generating units.

Appendix H explains the procedure for performing the LP computations using the MPSX system.

C. The Application of Demand Duration Curves in the Model


Different types of electrical energy generating units have different functions in modern interconnected power systems. The main unit types are: 1) fossil fueled units which run basically on fuel oil, coal, and gas; 2) hydro units; 3) nuclear reactor units; and 4) special-purpose peaking units which are usually combustion turbine or pumped storage units.

Generally, combustion turbine units have low capital but high generation costs; nuclear reactor units have high capital but low generating costs; and hydro units have high or low capital costs depending on the site of the hydro units, with almost no generation costs.

Therefore, combustion turbine units are usually used for peak load

periods, fossil fueled units for intermediate load periods, nuclear reactor units for base loads, and hydro units used as required, depending on costs, unit availability, and the energy constraint. However, because of its very small contribution in Iowa, hydro is neglected in this study. Consequently, the optimum balance of the units in the system at any time will depend on the relative capital and generation costs of the various electrical energy generating units.

In a given power system, the cheapest way of meeting the demand at any time is to run the generating units which have the lowest operating costs, which is largely dependent on fuel costs. The system dispatcher tabulates the generating units in ascending order of marginal operating costs, and loads or unloads the units sequentially as the demand rises and falls. Figure 5.5 gives a typical table of available plant capacities and an annual demand duration curve. In this figure, the system is represented by four different types of power generating units. They are, in ascending order of marginal operating costs, nuclear, new fossil, old fossil, and combustion turbine units. By projecting the plant capacities horizontally through the annual demand duration curve, one can find the total operating time of each plant for the period represented by the curve. By estimating the areas slices out of the load duration curve, one can estimate the energy delivered by each generating unit and thus the total fuel costs, and consequently the total system operating costs. These costs will be at a minimum when this method is used, because the generating units with the highest fuel costs, such as old fossil fueled units or combustion turbines, will be operated the least.

(A) TABLE OF AVAILABLE PLANT CAPACITIES (B) DEMAND DURATION CURVE

Figure 5.5. A typical table of available plant capacities and an annual demand duration curve

The FAM, which uses the LP technique, not only minimizes the fuel costs of the Pool or of an individual company for a given period in a computerized fashion, but it also gives an optimized solution. According to the definition, an optimal solution is a feasible solution which minimizes the objective function.

In view of the general uncertainties associated with long term power systems planning, it is reasonable to make some simplifying assumptions. Therefore, because of lack of precise data, demand duration curves are assumed for each company and for the Iowa Pool. The assumed demand duration curve for the Iowa Pool is shown in Figure 5.6 as an example.

Usually each operating utility has records of the actual load duration curve experienced by that utility on a yearly, monthly, weekly, or even a daily basis. Such detailed information could be projected for each utility for future years and used in the optimization study. The method of obtaining the optimum would be the same, however, and the assumed average load duration was chosen as a compromise for this study.

D. Input Data

Some of the input data for the FAM model, needed to minimize overall fuel costs of the Iowa Pool or of an individual utility by optimum allocation of various fuel mixes among generating units over a period of n years, are presented in the tables shown on the following pages.

The capacity data of the generating units of the nine companies involved in this study are shown in Tables 5.4 to 5.12. These data have been provided by the individual companies.

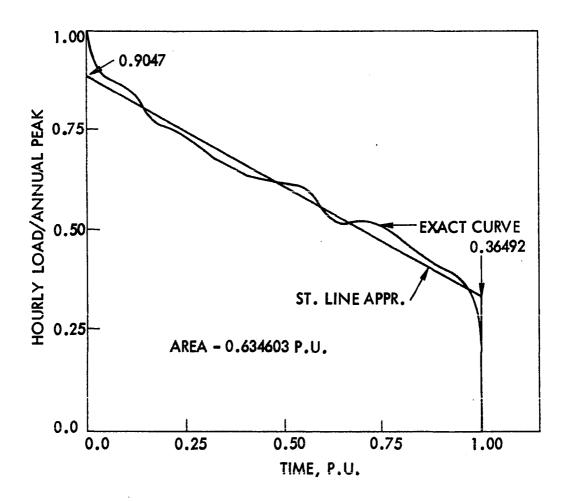


Figure 5.6. An assumed demand duration curve for the Iowa Pool (141)

Unit	St	acion		Minimum	Maximum	Heat Rate	Unit	Fuel Type	
Serial No.	Name		Unit No.	Load (MW)	Load (MW)	(Btu/KWh)	Unit Efficiency (η)	rder Type	
1	DPS		7	40	90	10,400	0.3281	Coal (0.5 Wyo. + 0.5 Iowa)	
2	**		6	20	60	11,500	0.2967	11 11 11 11	
3	**		5	20	50	14,000	0.2437	011	
4	Council B	luffs	3	75	280	9,500	0.3592	Coal (Wyo.)	
5	Ħ	81	2	30	80	10,600	0.3220	11 11	
6	H	88	1	20	40	11,500	0.2968	11 11	
7	Nea1		1	30	105	9,500	0.3592	11 tt	
8	Sycamo	re	1	35	70	12,000	0.2844	011	
9	11		2	35	70	12,000	0.2844	11	
10	River Hi	1 1s	1	15	15	16,000	0.2133	**	
11	81 1	**	2	15	15	11	11	11	
12	**	17	3	15	15	11	11	**	
13	11 1	11	4	15	15	11	11	11	
14	FI 1	11	5	15	15	**	88	11	
15	11 1	11	6	15	15	f 8	11	**	
16	11 1	11	7	15	15	**	**	11	
17	11 1	11	8	15	15	*1	81	87	

Table 5.4. Capacity data for the generating units of company number 1 (IPL)

Table	5.4.	Continued.	
-------	------	------------	--

11	Statio	n	Min incom	Mandana	Noch Dobo		The s 1 mars -
Unit Serial No.	Name	Unit No.	Minimum Load (MW)	Maximum Load (MW)	Heat Rate (Btu/KWh)	Unit Efficiency (η)	Fuel Type
	PURCHASES :	به ب ن به اع اد است ر ب بر اجتماع ه <u>اه های ا</u>					
18	Cinus	1	50	150	-	-	Nuclear
19	Cooper	1	100	350	-	-	11
20	Firm	1	0	75	· _	-	Coa1
21	Firm	2	0	70	-	-	**
22	Econ.	1	0	500	-	-	ţ t
	SALES :						
23	Firm	1	0	85	-	-	Coal
24	Firm	2	0	150	-	-	11
25	Firm	3	0	75	-	~	11

 \sim

TT - 1 4-	Station				T = - (D - b		- 1 -
Unit Serial No.	Name	Unit No.	Minimum Load (MW)	Maximum Load (MW)	Heat Rate (Btu/KWh)	Unit Efficiency (η)	Fuel Type
1	Bridgeport	1	5	20.1	15,700	0.2173	Oil, Coal
2	P#	2	5	20.1	"	**	H H
3	88	3	5	20.9	**	11	11 11
4	Burlington	1	70	207	10,082	0.3385	Coal
5	Centerv:11e	1-3	0	6	12,000	0.2844	011
6	Creston	3,4	0	2.5	n	n .	11
7	Washington	1,2	0	2.5	11	11	11
8	Neal	3	70 ⁸	145.6	9,500 ^a	0.3592	Coal
PURCH	ASES :						
9	Firm		-	20	-	-	
10	Firm	-	-	1	-	-	-
11	Econ.	-	-	150 ^a	-	-	-
SALES	:						
12	Firm	-	-	5	-	-	-
13	Firm	Aa	-	8	-	-	- .
14	F:1rm	-	-	10	-	-	-

Table 5.5. Capacity data for the generating units of company 2 (ISU)

a Assumed value.

I lag é tr	Statio	on	Minimum	Maximum	Heat Rate	Unit	Eucl Trees
Unit Serial No.	Name	Unit No.	Load (MV)	Load (MW)	(Btu/KWh)	Unit Efficiency (η)	Fuel Type
1	Big Sioux	1	4	12	18,000	0.1896	Gas
2	11 11	2	4	12	11	11	11
3	11 11	3	۷.	12	"	11	"
4	11 11	4	۲	13	16,000	0.2133	11
5	Carrol1	1	3	5	11	**	11
6	11	2	3	5	**	11	Coal
7	Eagle Gr.	1	۲,	10	15,000	0.2275	11
8	Hawkeye	1	Ľ۴	10	**	**	"
9	18	2	۲,	13	14,000	0.2437	11
10	Kirk	1	3	10	15,000	0.2275	0i1
11	11	5	2	9	**	11	11
12	Maynard	4	Ľ,	11	**	12	Gas
13	ti	5	4	12	11	11	11
14	11	6	5	24	12,000	0.2844	11
15	11	7	7	57	10,500	0.3250	Coal
16	Nea1	1	50	147	10,000	0.3413	11
17	11	2	100	330	9,700	0.3518	11
18	11	3	150	415	9,500	0.3592	11
19	18	4	150	226	11	11	11

Table 5.6. Capacity data for the generating units of company 3 (IPS)

Table 5.6. Continued.

77	Statio	Station			Heat Rate	77	- 1 -
Unit Serial No.	Name	Unit No.	Minimum Load (MW)	Maximum Load (MW)	(Btu/KWh)	Unit Efficiency (η)	Fuel Type
20	Parr Ct.	1	10	17	16,000	0.2133	011
21	11 11	2	10	17	81	11	11
22	Waterloo Ct.	1	40	60	11,000	0.3102	ŦŦ
23	11 11	2	40	65	TT	11	11
	Diesel	1	1	26	10,000	0.3413	11

Unit	Station		Mininum	Maximum	Master Dates	TT . J b	The 1 march
Serial No.	Name	Unit No.	Load (MW)	Load (MW)	Heat Rate (Btu/KWh)	Unit Efficiency (η)	Fuel Type
1	A. Lea	2.	2	4.7	22,000	0.1551	Gas
2	17 '12	3	2	6.0	19,000	0.1796	0i1
3	TT 1T	۲,	3	8.3	15,500	0.2201	11
4	Карр	1	6	18.5	14,000	0.2437	Gas
5	11	2	55	220	10,300	0.3313	0i1
6	Dubuque	2.	6	15	18,000	0.1896	Coal
7	11	3	10	30	12,800	0.2666	Gas
8	**	4	18	35	12,000	0.2844	0i1
9	Fox Lake	1.	4	12	13,700	0.2491	Coal
10	88 D#	2	4	12	13,700	88	Gas
11	88 8 8	3	19	84	10,700	0.3189	0i1
12	Lansing	1	8	17.5	13,300	0.2566	11
13	**	2	4	10.7	13,600	0.2509	Coal
14	**	3	10	33.8	12,000	0.2844	**
15	Mason City	2	3	5.5	19,500	0.1750	Gas
16	11 11	3	4	10.5	18,000	0.1896	011
17	TT TT	4.	4	9	15,000	0.2275	11
18	Montgy. G.T.	1	22	22.2	14,000	0.2437	11

Table 5.7. Capacity data for the generating units of company 4 (ISP)

Table 5.7. Continued.

Unit	Station		nit Load Load	Maximum	Heat Rate (Btu/KWh)	Unit Efficiency (η)	Fuel Type
Serial No.	Name	Unit No.		Load			
19	Fox Lake G.T.	4	21	21.3	14,000	0.2437	011
20	Lansing	4	70 [°]	260	9,500	0.3592	Coal

a Assumed value.

11	Station			Minimum	Maximum	Heat Rate		Eucl Turo
Unit Serial No.	Name		Unit No.	Load (MW)	Load (MW)	(Btu/KWh)	Unit Efficiency (ŋ)	Fuel Type
1	Sutherlax	ad	1	10	31.5	12,309	0.2772	Coal
2	11		2	10	31.5	12,301	0.2774	**
3	11		3	45	82.5	10,197	0.3347	Ħ
4	Prairie Ca	reek	1	7	23.5	12,659	0.2696	11
5	11	11	2	7	23.5	12,662	0.2695	**
6	11	11	3	19	49.5	11,121	0.3069	17
7	87	11	4	55	120	9,945	0.3031	**
8	6th St.		2	3	3	9,034	0.3778	11
9	17 17		4	5	19	16,265	0.2098	11
10	11 11		7	5	19	15,297	0.2231	11
11	11 11		8	8	28	14,566	0.2343	NF 4
12	11 11		9	0	23	17,200	0.1984	11
13	Boone		1,2	10	29	14,044	0.2430	11
14	11		3	0	7	16,800	0.2031	11
15	Iowa Fall	Ls	4	3	9	14,956	0.2282	11
16	DAEC		••	220	476	10,278	0.3320	Nuclear
17	Diesel		-	0	37.5	12,500	0.2730	Oil

Table 5.8. Capacity data for the generating units of company 5 (IELP)

T T - 1 4		Station			Test Dete	•••	
Unit Serial No.		Unit No.	Minimum Load (MW)	Maximum Load (MW)	Heat Rate (Btu/KWh)	Ünit Efficiency (η)	Fuel Type
1	DAEC		••	106	10,278	0.3320	Nuclear
2	P. C.	1	-	20	12,600	0.2708	Coal
3	11 11	2	-	20	11	11	Ŧŧ
4	11 11	3	-	48	11,200	0.3047	11
5	S. L.	1-4	-	4	12,000	0.2844	0i1
6	G. T.	1	-	29	14,100	0.2420	11
7	11 13	2	÷	28	**	**	11
8	H. R.	1	-	24	10,200	0.3346	**

Table 5.9. Capacity data for the generating units of company 6 (CIPC)

11	Station	n	Nei - i	Mansimum	Heet Dete	TT di da	77 1	M
Unit Serial No.	N&me	Unit No.	Minimum Load (MW)	Maximum Load (MW)	Heat Rate (Btu/KWh)	Unit Efficiency (ŋ)	ruel	Туре
1	Coral.ville	1	0	83	17,000	0.2007	0il,	Gas
2	М	3	0	14	24,000	0.1422	11	11
3	11	5	0	21	13,000	0.2625	11	**
4	11	6	-	27	12,000	0.2844	11	11
5	11	7	-	28	13,000	0.2625	11	11
6	Moline	1	-	78	17,000	0.2007	11	11
7	Q. C.	1	60	1 92	11,000	0.3102	Nucle	ear
8	** **	2	"	11	11	11	11	
9	R.	1	0	24	19,000	0.1796	Ga	is
10	11	3	0	26	14,000	0.2437	Coal,	Gas
11	**	4	15	51	12,000	0.2844	u	"
12	13	5	15	143	9,700	0.3518	11	"
13	Riverside	1	0	75	17,000	0.2007	11	н
14	Ne:a1	3	50	151	9,300	0.3670	Coa	1
15	M	8	0	40	10,000	0.3413	0i1,	Gas
16	С. В.	3	60	211	9,300	0.3670	Coa	11
17	Ott.	1	40	125	TT	**	T	1
18	Carroll	1	50	165	11,000	0.3102	Nucle	ear

Table 5.10. Capacity data for the generating units of company 7 (IIGE)

Table 5.10. Continued.

Unit	Stati	on	Minimum	Maximum	Heat Rate	Unit	Fuel Type
Serial No.	Name	Unit No.	Load (MW)	Load (MW)	(Btu/KWh)	Efficiency (η)	
PURCHASE	ES :	یں <u>ور پر پر اور اور اور اور اور اور اور اور اور او</u>					
19	I. P.	-	-	25	-	-	-

	Stati	on	112-1		Here to Deter		. 1	-	
Unit Serial No.	Name	Unit No.	Minimum Load (MN)	Maximum Load (MW)	Heat Rate (Btu/KWh)	Unit Efficiency (η)	Fuel	Туре	
1	Humboldt	1	2	10	14,500	0.2353	Gas,	Coal	
2	*1	2	2	10	15,000	0.2275	11	11	
3	• •	3	3	13	13,500	0.2528	11	11	
4	11	4	5	19	13,000	0.2625	11	11	
5	Wisdom	1	10	39	11,800	0.2892	11	11	
6	DAEC	-	-	200	10,278	0.3320	Nucl	lear	
PURCHA	SES:								
7	USBR	1	-	29	-	-	Hyd	iro	

Table 5.11. 0	Capacity data	for the	generating	units	o£	company	8	(CPA)
---------------	---------------	---------	------------	-------	----	---------	---	-------

a Assumed values.

Station									
Unit Serial No.	Name	Unit No.	Minimum Load (MW)	Maximum Load (MW)	Heat Rate (Btu/KWh)	Unit Efficiency (η)	Fuel Type		
1	Fair	1.	8	25	11,500	0.2967	Coal		
2	11	2	12	40	11,200	0.3046	18		

Table 5.12. Capacity data for the generating units of company 9 (EILP)

Fuel and energy cost forecasts of the companies for the years between 1975 and 1985 are shown in Tables 5.13 to 5.21. The average fuel cost increase is forecast to be about 7 percent from 1975 until 1985. Fuel cost and energy purchase cost forecasts, in cents per MBtu and in mills per kWh, have been provided by the companies, which considered their long term contracts with the supplying companies in making the forecasts. In order to construct the model more efficiently, the costs involved are converted into dollars per MWh.

The following tables show the sulfur emissions and restrictions for the generating units of company 1 (IPL). Table 5.22 shows the maximum level of permissible sulfur emissions, according to EPA Standards and State of Iowa regulations, for the coal-burning units of company 1 in pounds per MBtu and in pounds per MWh. Also, Table 5.23 indicates the maximum level of permissible sulfur emissions for the oil-burning units of company 1 in pounds per MBtu and in pounds per MWh.

Table 5.24 and Table 5.25 give the projected level of sulfur emissions resulting from the operation of the coal-burning and oil-burning units of company 1 for the years from 1975 to 1985 in pounds per MBtu and in pounds per MWh, according to projected fuel qualities.

In Tables 5.24 and 5.25, column 1 gives the years which are covered in this study. Column 2 shows the unit serial numbers of company 1. Column 3 indicates, in MBtu, the heat input needed to generate one MWh electrical energy from each unit. Column 4 gives information on the fuel types used in each unit of company 1 for the years from 1975 to 1985. Column 5 reveals the heat value of the fuel used in MBtu per ton or MBtu per barrel,

while column 6 shows the sulfur content of the fuel, in percent. Column 7 gives the sulfur content of the fuel in pounds per ton or in pounds per barrel. Column 8 shows the level of sulfur emission from each unit, in pounds per MBtu, which is calculated by dividing each value in column 7 by the related value in column 5. Column 9 gives the same sulfur emission data in pounds per MWh, which are calculated by dividing the values in column 3 by the values in column 8.

Unit S erial No.	1975	1976	1977	1978	1979	1980	1981	1 982	1983	1984	1985
1	7.69	8.23	8.81	9.43	-	**			-	-	-
2	8.51	9.10	9.74	10.42	1.1.15	11.93	12.77	13.66	14.62	15.64	16.74
3	44.11	47.20	50.50	54.04	57.82	61.87	66.20	70.84	75.79	81.10	86.78
4	-	━,	-	-	8.41	9,86	10.55	11.28	12.08	12.92	13.83
5	7.84	8.39	8.98	9.60	-	**	-	-	-	-	-
6	8.51	9.10	9.74	10.42	1.1.15	11.93	12.77	13.66	14.62	15.64	16.73
7	-	6.30	6.74	7.21	7.72	8.26	8.84	9.45	10.12	10.83	11.58
8	37.80	40.44	43.27	46.30	49.55	53.01	56.73	60.70	64.95	69.49	74.36
9	11	Jt	11	11	11	11	11	11	11	11	
10	50.40	53.93	57.70	61.74	66.06	70.69	75.64	80.93	86.60	92.66	99.15
11	11	Ħ	11	11	11	11	**	11	11	11	11
12	11	11	11	11	tt	11	17	11	11	11	11
13	IT	**	11	**	11	11	11	п	11	"	11
14	11	*1	11	11	11	11	11	11	11	11	11
15	п	н	11	11	11	11	11	11	"	11	11
16	11		11	11	11		11	"	"	"	"
17	11	н	11	"	11		11	11	11	"	11

,

Table 5.13. Forecasted fuel and energy costs for company 1 (IPL) for the years from 1975 to 1985 in dollars per MWh

Table 5.13. Continued.

.

Unit Serial No.	1975	1976	1.977	1978	197 9	1980	1981	1982	1983	1984	1985
PURCHAS	ES:										
18	-		-	-	-		-	-	-	3.70	3.88
19	1.93	2.02	2.12	2.23	2.34	2,46	2.58	3.05	3.20	3.36	3.53
20	-		-	6.20	6.20	-	-	-	-	-	-
21	-	••	-	-	-		-	-	10.10	10.10	-
22	40.00	42.80	45.79	49.00	52.43	56.10	60.02	64.23	68.72	73.53	78.68
SALES:											
23	-	5.50	5.50	-	-	-	-	-	-	-	-
24	-		-	-	6.20	6.20	-	-	-	-	-
25	-		-	- .	-	6,60	6.60	-	-	-	-

		······									
Unit Serial No.	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985
1	26.53	28.39	30.37	32.50	34.77	37.21	39.81	42.60	45.58	48.77	52.19
2	11	11	11	ti -	11	"	11	11	11	11	11
3	11	**	н	11	11	**	11	11	11	11	
4	6.04	6.47	6.92	7.41	7.92	8.48	9.07	9.71	10.39	11.12	11.89
5	25.20	26.96	28.85	30.74	32.89	35.20	37.66	40.40	43.12	47.03	50.32
6	11	1 P	11	11	11	11	11	11	11	11	"
7	11	80	11	11	11	п	11	п	11	H ·	11
8	-	6.30	6.74	7.21	7.72	8.26	8.83	9.45	10.12	10.82	11.58
PURCHAS	ES:										
9	5.5	5.88	-	-	-	-	-	-	-		-
10	5.5	5 .8 8	6.29	6.73	7.20	7.71	8.25	8.83	9.45	10.11	10.82
11	50.40	53.9 3	57.70	61.74	66.06	70.69	75.66	80.93	86.60	92.66	99.15
SALES:											·
12	6.2 ^b		-	-	-	-	-	-	-	-	-
13	-	6.6 ^b	- 1-	-	-	-	-	-	-	-	-
14	-	••	б.9 ^Б	-	-	-	-	-	-	-	-

Table 5.14. Forecasted fuel and energy costs for company 2 (ISU) for the years from 1975 to 1985 in dollars per MWh^a

^a7 percent annual cost increase is assumed.

^bAssumed values.

Unit Serial No.	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	
1	9.00	(#	-		-	-	-		-	-	-	
2	9.00		-	-	-	-	-		-	-	-	
3	9.00	-	-	-	-	-	-	-	-	-	-	
4	8.00	(3)	-	-	-	· _	-	e 9	-	-	-	
5	15.52	17.12	18.72	20. 64	22.72	24.96	-		-	-	-	
6	11	11	11	11	11	11	-	4.5	-	-	-	
7	15.84	17,44	19.20	21.12	23.30	25.44	-	**	-	-	-	
8	16.16	17,76	19.52	21.44	23.68	26.08	-	Ci	-	-	-	
9	14.14	15.54	17.08	18.76	20.72	22.82	-		-	-	-	
10	34.20	37.65	41.40	45.45	-	-	-		-	-	-	
11	34.20	37,65	41.40	45.45	-	-	-	-	-	-	-	
12	7.65	8.40	-	-	-	-	-	-	-	-	-	
13	7.65	8.40	-	-	-	~	-	••	-	-	-	
14	6.12	6.72	33.12	36.43	40.07	44.08	48.49	53.34	58.67	64.54	71.00	
15	11.13	12.24	13.46	14.81	16.29	17.92	19.71	21.69	23.86	26.24	28.87	
16	5.90	6.49	7.13	7.85	8.63	9.50	10.45	11.49	12.64	13.91	15.30	
17	5.72	6.29	6.92	7.61	8.37	9.21	10.13	11.15	12.26	13.49	14.84	
18	-	6.16	6.78	7.46	8.20	9.02	9.93	10.92	12.01	13.21	14.53	
19	-	-	-	-	**	11	11	ff	п	11	U.	

Table 5.15. Forecasted fuel and energy costs for company 3 (IPS) for the years from 1975 to 1985 in dollars per MWh

Table 5.15. Continued.

Unit Serial No.	1.975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985
20	36.48	40.13	44.14	48.55	53.41	58.75	64.63	71.09	78.20	86.02	94.62
21	11	118	11	11	11	11	11	11	11	11	11
22	25.08	27.58	30.34	33.38	36.71	40.39	44.43	48.87	53.76	59.13	65.05
23	11	U 1	11	11	11	11	11	11	11	**	
24	22.80	25.08	27.58	30.34	33.38	36.71	40.39	44.43	48.87	53.76	59.13

Unit Serial No.	1.975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985
1	12.32	13.18	14.10	15.09	16.15	17.28	18.49	19.78	21.17	22.65	24.24
2	45.36	48.53	51.93	55.56	59.45	63.09	67.50	72.23	77.29	82.70	88.49
3	32.56	34.84	37.28	39.73	42.51	45.48	48.67	52.08	55.72	60.78	65.03
4	7.84	8.39	8.97	9.60	10.27	10.99	11.77	12.59	13.47	14.41	15.42
5	21.63	23.14	24.76	26.39	28.24	30.22	32.33	34.60	37.02	40.38	43.20
6	12.87	13.77	14.73	15.76	17.06	18.25	19.53	20.90	22.36	23.93	25.60
7	7.16	7.67	8.20	8.78	9.39	10.05	10.75	11.51	12.31	13.17	14.10
8	25.20	26.96	28.85	30.74	32.90	35.20	37.67	40.30	43.12	47.04	50.33
9	9.79	10.48	11.21	12.00	12.98	13.89	14.87	15.91	17.02	18.21	19.49
10	7.67	8.21	8.78	9.40	10.05	10.76	11.51	12.32	13.18	14.10	15.09
11	25.54	27.33	29.24	31.29	33.48	35.83	38,33	41.02	43.89	46.96	50.25
12	27.93	29.88	31.97	34.08	3 6. 46	39.01	41.75	44.67	47.79	52.13	55.78
13	9.72	10.40	11.13	11.91	12.89	13.79	14.76	1.5,79	16.90	19.08	19.34
14	8.58	9.18	9.82	10.51	11.37	12.17	13.02	1.3.93	14.91	15.95	17.07
15	10.92	11.68	12.50	13.37	14.31	15.31	16.38	17.53	18.76	20.07	21.48
16	42.96	45.97	49.19	52.63	56.31	60.26	64.47	68.99	73.82	78.99	84.52
17	31.50	33.70	36.06	38.43	41.12	44.00	47.08	50.37	53.90	58.79	62.91
18	29.40	31.45	33.65	35.87	38.38	41.06	43.94	47.02	50.31	54.87	58.71

Table 5.16. Forecasted fuel and energy costs for company 4 (ISP) for the years from 1975 to 1985 in dollars per MWh

Table	5.16.	Continued.
-------	-------	------------

Unit Serial No.	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985
19	29.40	31.45	33.65	35.87	38.38	41.06	43.94	47.02	50.31	54.87	58.71
20	-	-	7.77	8.32	9.00	9.63	10.31	11.03	11.80	12.63	13.51

Unit Serial No.	197 5	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985
1	13.05	13.83	14.66	15.54	16.47	17.46	18.51	19.62	20.80	22.04	23.37
2	13.04	13.82	14.65	15.53	16.46	17.45	18.50	19.61	20.79	22.03	23.35
3	10.80	11.45	12.14	12.87	13.64	14.46	15.33	16.25	17.22	18.26	19.35
4	13.41	14.22	15.07	15.98	16.94	17.95	19.03	20.17	21.38	22.67	24.03
5	13.42	14.23	15.08	15.99	16.95	17.96	19.04	20.18	21.39	22.68	24.04
6	11.78	12.49	13.24	14.03	14.88	15.77	16.72	17.72	18.78	19.91	21.11
7	11.93	12.65	13.41	14.21	15.06	15.97	16.93	17.94	19.02	20.16	21.37
8	9.57	-	-	-	-	-	-	-	-	-	-
9	17.24	18.27	19.37	20.53	21.76	23.07	24.46	25.92	27.48	29.13	30.88
10	16.21	17.18	18.22	19.31	20.47	21.70	23.00	24.38	25.84	27.39	29.04
11	15.44	16.36	-	-	-	-	-	-	-	-	-
12	18.23	19.32	20.48	21.71	23.02	24.40	25.86	27.41	29.06	30.80	32.65
13	16.15	17.12	18.14	19.23	20.39	21.61	22.91	24.28	25.74	27.28	28.92
14	19.32	20.48	21.71	23.01	24.39	25.86	27.41	29.05	30.80	32.64	34.60
15	17.19	18.23	19.32	20.48	21.71	23.01	24.39	25.86	27.41	29.05	30.80
16	2.71	2.82	2.93	3.05	3.17	3.30	3.45	3.57	3.71	3.86	4.01
17	29.75	31.57	33.43	3 5.43	37.56	39.81	42.20	44.73	47.42	50.26	53.28

Figure 5.17. Forecasted fuel and energy costs for company 5 (IELP) for the years from 1975 to 1985 in dollars per MWh

Unit Serial No.	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985
1	2.23	2.38	2.55	2.73	2.92	3.12	3.34	3.58	3.83	4.10	4.38
2	12.41	13.28	14.21	15.20	16.26	17.40	18.62	19.93	21.32	22.81	24.41
3	18	11	11	11	11	11	11	11	11	11	11
4	11.03	11.80	12.63	13.51	14.46	15.47	16.55	17.71	18.95	20.28	21.70
5	22.57	24.15	25.84	27.65	29.59	31.66	33.88	36.25	38.79	41.50	44.41
6	26.52	28.38	30.37	32.49	34.77	37.20	39.81	42.59	45.58	48.77	52.18
7	**	11	**	11	11	11	11	11		11	11
8	19.19	20.53	21.97	23.50	25.15	26.91	28.79	30.81	32.97	35.97	37.75

٠

Table 5.18. Forecasted fuel and energy costs for company 6 (CIPC) for the years from 1975 to 1985 in dollars per MMh

Unit Serial No,	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985
1	32.30	33.92	35.61	37.38	39.27	41.22	43.28	45.44	47.72	50.10	52.61
2	45.60	47.88	-	-	-	-	-	-	-	-	-
3	24.70	25.93	27.23	28.58	30.03	31.52	33.10	34.75	36.49	38.31	40.26
4	22.80	23.94	25.14	26.37	27.72	29.10	30.55	32.07	33.68	35.36	37.16
5	24.70	25.93	27.23	28.58	30.03	31.52	33.10	34.75	36.49	38.31	40.26
6	32.30	33.92	35.61	37.38	39.27	41.22	43.28	45.44	47.72	50.10	52.61
7	2.31	2.35	2.40	2.45	2.50	2.55	2.60	2.65	2.70	2.76	2.81
8	11	tt	11	11	11	11	11	11	11	11	11
9	11.40	11.97	12.57	13.20	13.85	14.55	15.27	16.04	16.84	17.68	18.57
10	9.80	10.29	10.80	11.34	11.91	12.50	13.13	13.79	14.48	15.20	15.96
11	8.40	8.82	9.26	9.72	10.21	10.72	11.25	11.82	12.41	13.03	13.68
12	6.79	7.13	7.49	7.86	8.25	8.66	9.10	9.55	10.03	10.53	11.06
13	10.20	10.71	11.24	11.80	12.40	13.01	13.66	14.35	15.07	15.82	16.61
14	-	5.37	5.64	5.92	6.21	6.52	6.85	7.19	7.55	7.93	8.33
15		19.95	20.95	21.99	23.10	24.25	25.46	26.73	28.07	29.47	30.95
16	-	-	-	-	6.78	7.12	7.47	7.85	8.24	8.65	9.09
17	-	-	-	-	-	-	"	**	**	**	**
18	-	-	-	-	-	-	. 🗕	. –	-	-	2.81

Table 5.19. Forecasted fuel and energy costs for company 7 (IIGE) for the years from 1975 to 1985 in dollars per MWh

Table 5.19. Continued.

Unit Serial No.	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985
PURCHASE	:S :	میں منظرم نور پر پر بانظریت پر									
19	-	-	5.00	5.00	-	-	-	-	-	-	-

-

Unit Serial No.	1.975	1976	1 977	1978	1979	1980	1981	1982	1983	1984	1985
1	12.40	13.34	19.28	21.17	22.48	23.92	25.37	26.82	28.56	30.16	32.04
2	12.82	13.80	19.95	21.90	23.25	24.75	26.25	27.75	29.55	31.20	33.15
3	11.54	12.42	17.95	19.71	20.92	22.27	23.62	24.97	26.59	28.08	29.83
4	11.11	11.96	17.29	18.98	20.15	21.45	22.75	24.05	25.61	27.04	28.73
5	10.09	10.86	15.69	17.23	18.29	19.47	20.65	21.83	23.24	24.54	26.07
6	271	2.82	2.93	3.05	3.17	3.30	3.43	3.57	3.71	3.80	4.01
PURCHASI	ES:										
7	2.61	2.71	2.81	2.91	3.01	3.11	3.21	3.31	3.41	3.51	3.61

Table 5.20. Forecasted fuel and energy costs for company 8 (CPA) for the years from 1975 to 1985 in dollars per MWh

Table 5.21. Forecasted fuel and energy costs for company 9 (EILP) for the years from 1975 to 1985 in dollars per MMh

Unit Serial No.	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985
1	8.62	9 2.0	9.77	10.80	11.50	12.30	13.22	14.14	15.06	16.21	17.25
2	11	11	11	"	11	11	**	11	11	11	11

			Permissible Sulfur Emission							
Unit Serial	Unit Unit Serial Efficiency	κ _ι /η		EPA Standard	Iowa Regulation					
No. Col. 1	(η) Col. 2	(MBtu/MWh) Col. 3	(1b/MBtu) Col. 4	(1b/MBtu) Col. 5 = Col. 3 x Col. 4	(1b/MBtu) Col. 6	(1b/MBtu) Col. 7 = Col. 3 x Col. 6				
1	0.3281	10.4	1.2	12.48	5.0	52.0				
2	0.2967	11.5	11	13.80	11	57.5				
4	0.3592	9.5	11	11.40	11	47.5				
5	0.3220	10.6	19	12.72	11	53.0				
6	0.2968	11.5	17	13.80	11	57.5				
7	0.3592	9.5	14	11.40	11	47.5				

Table 5.22. Maximum permissable sulfur emissions for the coal burning units of company 1 according to EPA standards and State of Iowa regulations in 1bs per MBtu and in 1bs per MWh

Unit	Unit	T		Permissible	ستؤسبوه فيسولانيه فالسنجيدن بجانكانات	
		K ₁ /η _j (MBtu/MWh) Col. 3			(1b/MBtu)	Iowa Regulation (1b/MBtu) Col. 7 = Col. 3 x Col. 6
3	0.2437	14.0	0.8	11.2	2.5	35.0
8	0.2844	12.0	19	9.6	11	30.0
9	11	11	IS	11	11	30.0
10	0.2133	16.0	18	12.8	17	40.0
11	11	11	10		11	"
12	11	11	80	11		**
13	17	11	18	"	u	**
14	11	It	19	u	11	**
15	**	H .	19	11	11	88
16	11	11	19	11	**	**
17	11	IT	19	11	17	11
		، ويتكاملون حين الك مترجوعي				

Table 5.23. Maximum permissable sulfur emissions for the oil burning units of company 1 according to EPA standards and State of Iowa regulations in 1bs per MBtu and in 1bs per MWh

Table 5.24. Projected sulfur emissions resulting from the operation of the coal burning units of company 1 for the years from 1975 to 1985 in pounds per MBtu and in pounds per MWh, according to project coal qualities

Year	Unit Serial	K_1/η_j	Coal	Heat Value of Coal	Sulfur of C	Content oal	Sulfur F from th	
Col. 1	No. Col. 2	(MBtu/MWh) Col. 3	Type Col. 4	(MBtu/ton) Col. 5	(%) Col. 6	(1b/ton) Col. 7	(1b/MBtu) Col. 8 =Col. 7/Col. 5	(1b/MWh) Col. 9 =Col. 3/Col. 8
1975	1	10.4	0.5 Iowa + 0.5 Wyo.	17.6	1.925	38.5	2.187	22.75
11	2	11.5	11	17.6	1.925	38.5	2.187	25.15
11	4	9.5	Wyoming	20.6	0.9	18.0	0.874	8.3
11	5	10.6	11	20.6	0.9	18.0	0.874	9.26
11	6	11.5	11	20.6	0.9	18.0	0.874	10.05
1976	1	10.4	0.5 Icwa + 0.5 Wyo.	17.6	1.925	38.5	2.1875	22.75
11	2	11.5	11	17.6	1.925	38.5	2.187	22.75
11	4	9.5	Wyoming	20.6	0.55	11.0	0.679	6.45
11	5	10.6	11	20.6	0.55	11.0	0.679	6.45
11	6	11.5	11	20.6	0.55	11.0	0.679	6.45
11	7	9.5	"	20.6	0.9	18.0	0.874	8.3
1977	1	10.4	0.5 Iowa + 0.5 Wyo.	17.6	1.925	38.5	2.1875	22.75
11	2	11.5	11	17.6	1.925	38.5	2.187	22.75
**	4	9.5	Wyoming	20.6	0.55	11.0	0.679	6.45
11	5	10.6	11	20.6	0.55	11.0	0.679	6.45

Ð

Table 5.24. Continued.

Year	Unit Serial	K_1/η_j	Coal	Heat: Value of Coal	Sulfur of C	Content oal	Sulfur E from th	
Col. 1	No. Col. 2	(MBtu/MWh) Col. 3	Type Col. 4	(MBtu/ton) Col. 5	(%) Col. 6	(1b/ton) Col. 7	(1b/MBtu) Col. 8 =Col. 7/Col. 5	(1b/MWh) Col. 9 =Col. 3/Col. 8
1977	6	11.5	Wyoming	20.6	0.55	11.0	0.679	6.45
11	7	9.5	11	20.6	0.9	18.0	0.874	8.3
1978	1	10.4	0.5 Iowa + 0.5 Wyo.	17.6	1.925	38.5	2.187	22.75
11	2	11.5	11	17.6	1.925	38.5	2.187	22.75
11	4	9.5	Wyoming	20.6	0.55	11.0	0.679	6.45
"	5	10.6	11	20.6	0.55	11.0	0.679	6.45
11	6	11.5	11	20.6	0.55	11.0	0.679	6.45
11	7	9.5	11	20.6	0.9	18.0	0.874	8.3
1979	1	10.4	0.5 Iowa + 0.5 Wyo.	18.4	2.1	42.0	2.282	23.74
11	2	11.5	11	18.4	2.1	42.0	2.282	26.25
**	4	9.5	Wyoming	16.2	0.55	11.0	0.679	6.45
**	5	10.6	tr	16.2	0.55	11.0	0.679	6.45
"	6	11.5	11	16.2	0.55	11.0	0.679	6.45
11	7	9.5	11	20.6	0.9	18.0	0.874	8.3
1980	1	10.4	0.5 Iowa + 0.5 Wyo.	18.4	2.1	42.0	2.282	23.74
11	2	11.5	H	18.4	2.1	42.0	2.282	26.25

Table 5.24. Continued.

Year	Unit Serial	K1/nj	Coal	Heat Value of	Sulfur of C	Content coal	Sulfur E from th	
Col. 1	No. Col. 2	(MBtu/MWh) Col. 3	Type Col. 4	Coal (MBtu/ton) Col. 5	(%) Col. 6	(1b/ton) Col. 7	(1b/MBtu) Col. 8 =Col. 7/Col. 5	(1b/MWh) Col. 9 =Col. 3/Col. 8
1980	4	9.5	Wyoming	16.2	0.55	11.0	0.679	6.45
11	5	10.6	11	16.2	0.55	11.0	0.679	6.45
**	6	11.5	**	16.2	0.55	11.0	0.679	6.45
11	7	9.5	11	20.6	0.9	18.0	0.874	8.3
1981	1	10.4	0.5 Icwa - 0.5 Wyo	18.4	2. 1	42.0	2.282	23.74
11	2	11.5	ás.	18.4	2.1	42.0	2.282	26.25
11	4	9.5	Wyoming	16.2	0.55	11.0	0.679	6.45
11	5	10.6	11	16.2	0.55	11.0	0.679	6.45
11	6	11.5	11	16.2	0.55	11.0	0.679	6.45
11	7	9.5	11	20.6	0.9	18.0	0.874	8.3
1982	1	10.4	0.5 Icwa ⊹ 0.5 Wyo.	18.4	2.1	42.0	2.282	23.74
11	2	11.5	11	18.4	2.1	42.0	2.282	26.25
11	4	9.5	Wyoming	16.2	0.55	11.0	0.679	6.45
11	5	10.6	11	16.2	0.55	11.0	0.679	6.45
11	6	11.5	11	16.2	0.55	11.0	0.679	6.45
11	7	9.5	11	20.6	0.9	18.0	0.874	8.3

Table 5.24. Continued.

Year	Unit Serial	K ₁ /η _j (MBtu/MWh)	Coal	Heat Value of Coal	Sulfur of C	Content cal	Sulfur H from th	
Col. 1	No. Col. 2	Col. 3	Type Col. 4	(MBtu/ton) Col. 5	(%) Col. 6	(1b/ton) Col. 7	(1b/MBtu) Col. 8 =Col. 7/Col. 5	(1b/MWh) Col. 9 =Col. 3/Col. 8
1983	1	10.4	0.5 Iowa + 0.5 Wyo.	18.4	2.1	42.0	2.282	23.74
11	2	11.5	11	18.4	2.1	42.0	2.282	26.25
11	4	9.5	Wyoming	16.2	0.55	11.0	0.679	6.45
11	5	10.6	11	16.2	0.55	11.0	0.679	6.45
11	6	11.5	Ħ	16.2	0.55	11.0	0.679	6.45
11	7	9.5	11	20.6	0.9	18.0	0.874	8.3
1984	1	10.4	0.5 Iowa + 0.5 Wyo.	18.4	2.1	42.0	2.282	23.74
11	2	11.5	11	18.4	2.1	42.0	2.282	26.25
11	4	9.5	Wyoming	16.2	0.55	11.0	0.679	6.45
11	5	10.6	11	16.2	0.55	11.0	0.679	6.45
11	6	11.5	11	16.2	0.55	11.0	0.679	6.45
11	7	9.5	11	20. 6	0.9	18.0	0.874	8.3
1985	1	10.4	0.5 Iowa + 0.5 Wyo.	18.4	2.1	42.0	2.282	23.74
**	2	11.5	11	18.4	2.1	42.0	2.282	26.25
11	4	9.5	Wyoming	16.2	0.55	11.0	0.679	6.45
11	5	10.6	11	16.2	0.55	11.0	0.679	6.45

Table 5.24. Continued.

Year	Unit Serial	K_1/η_j	Coal	Heat Value of	Sulfur Content of Coal		Sulfur Emission from the Unit		
Col. 1	No. Col. 2	(MBtu/MWh) Col. 3	Type	Coal (MBtu/ton) Col. 5	(%) Col. 6	(1b/ton) Col. 7	(1b/MBtu) Col. 8 #Col. 7/Col.5	(1b/MWh) Col. 9 =Col. 3/Col.8	
1985	6	11.5	Wyoming	16.2	0.55	11.0	0.679	6.45	
11	7	9.5	**	20.6	0.9	18.0	0.874	8.3	

Year	Unit Serial	K ₁ /n _j		Heat Value of		Content 011	Sulfur E from th	
Col. 1	No. Col. 2	(MBtu/MWh) Col. 3	Type Col. 4	Of1 (MBtu/Bb1) Col. 5		(1b/Bb1) Co1. 7		
1975	3	14.0	<i>#</i> 2	5.67	0.4	1.34	0.237	3.32
11	8,9	12.0	11	5.67	**	11	11	2.84
11	10-17	16.0	11	5.67	11	11	11	3.79
1976	3	14.0	11	5.67	11	11	11	3.32
11	8,9	12.0	11	5.67	11	11	11	2.84
**	10-17	16.0	11	5.67	11	11	11	3.79
1977	3	14.0	11	5.67	**	11	87	3.32
11	8,9	12.0	11	5.67	11	11	11	2.84
11	10-17	16.0	11	5.67	11	11	11	3.79
1978	3	14.0	11	5.67	11	11	11	3.32
11	8,9	12.0	11	5.67	11	**	11	2.84
"	10-17	16.0	11	5.67	11	11	11	3.79
1979	3	14.0	11	5.67	11	11	11	3.32
	8,9	12.0	11	5.67	11	**	11	2.84
11	10-17	16.0	TT	5.67	11	11	11	3.79
1980	3	14.0	11	5.67	11	11	88	3.32
11	8,9	12.0	11	5.67	11	11	11	2.84

Table 5.25. Projected sulfur emissions resulting from the operation of the oil burning units of company 1 for the years from 1975 to 1985 in pounds per MBtu and in pounds per MWh, according to projected oil qualities

Table 5.25. Continued.

Year	Unit Serial	K ₁ /n _j (MBtu/MWh)	Oil Type	Heat Value of Oil		Content 011	Sulfur E from th	
Col. 1	No. Col. 2	(MBtu/Bbl) (%) (1b/Bbl		(1b/Bb1) Col. 7	(1b/MBtu) Col. 8 = Col. 7/Col. 5	(1b/MWh) Col. 9 = Col. 3 x Col. 8		
1980	10-17	16.0	#2	5.67	0.4	1.34	0.237	3.79
1981	3	14.0	11	5.67	11	11	11	3.32
11	8,9	12.0	11	5.67	11	**	11	2.84
11	10-17	16.0	11	5.67	11	11	**	3.79
1982	3	14.0	11	5.67	11	11	11 -	3.32
11	8,9	12.0	11	5.67	11	18	11	2.84
11	10-17	16.0)1	5.67	11	11	11	3.79
1983	3	14.0	11	5.67	11	11	11	3.32
11	8,9	12.0	11	5.67	11		11	2.84
ET	10-17	16.0	11	5.67	11	17	"	3.79
1984	3	14.0	11	5.67	11	11	11	3.32
11	8,9	12.0	11	5.67	11	11	11	2.84
11	10-17	16.0	11	5.67	ff -	**	17	3.79
1985	3	14.0	18	5.67	11	11	11	3.32
11	8,9	12.0	Ħ	5.67	11	11	11	2.84
11	10-17	16.0	11	5.67	11	Н	"	3.79

VI. THE RESULTS OF ELECTRICAL ENERGY MODEL APPLICATIONS

In this chapter a number of the application results are presented which illustrate the usefulness of the electrical energy model which is presented in Chapter V.

The model has been applied to each of the nine utility companies individually in order to minimize their overall fuel costs through optimum allocation of various fuel mixes among generating units of each utility. The results are shown in Table 6.1. The table reveals the present worth of annual optimum total fuel costs in dollars for each company with independent optimum operation of its generation units for the years from 1975 to 1985.

The model has also been applied to the Iowa Pool under the assumption that the Pool members will act as a united group in order to minimize their overall fuel costs by optimum allocation of various fuel mixes among generating units of the Pool. Table 6.2 shows the optimum annual energy generation in MWh and the present worth of total fuel costs, in dollars, of optimum energy generation for the companies, with optimum Iowa Pool operation, for the years from 1975 to 1985. Table 6.3 shows the comparison of the forecasted results of independent operation with those of Pool operation. It shows the total optimum energy generation for the whole Pool in MWh and the present worth of annual optimum total fuel costs, in dollars, for the optimum independent operation of the companies, and for their cooperative optimum operation as the Iowa Pool for the years from 1975 to 1985. The results have been plotted on Figure 6.1 As can be seen from Table 6.3 and Figure 6.1, there is a considerable savings to the com-

Company No.	Year	Annual Energy Generation	Total Fuel Costs	Present Worth	Present Worth of Total Fuel Costs
NO.		(MWh)	(\$)	Factor	(\$)
1	1975	4,111,000.0	43,199,182.7	0.9259	39,998,123.3
	1976	4,423,000.0	50,787,970.2	0.8573	43,540,526.9
	1977	4,769,000.0	61,539,257.3	0.7938	48,849,862.4
	1978	5,152,000.0	64,288,429.4	0.7350	47,251,995.6
	1979	5,5 3 4,000.0	88,589,663.0	0.6806	60,294,124.6
	1980	5,945,000.0	126,830,113.0	0.6302	79,928,337.2
	1981	6,396,000.0	134,375,298.2	0.5835	78,407,986.5
	1982	6,877,000.0	159,266,829.8	0.5403	86,051,868.1
	1983	7,353,000.0	164,168,590.1	0.5002	82,117,128.8
	1984	7,893,000.0	210,527,705.3	0.4632	97,516,433.1
	1985	8,466,000.0	256,690,856.7	0.4289	110,094,708.4
Total		66,919,000.0	1,380,850,679.7	-	774,051,094.9
2	1975	1,488,000.0	12,251,601.1	0.9259	11,343,757.5
	1976	1,706,000.0	14,525,175.9	0.8573	12,452,433.3
	1977	1,907,000.0	17,205,297.9	0.7938	13,657,565.5
	1978	2,039,000.0	20,541,137.0	0.7350	15,097,735.7
	1979	2,176,000.0	23,220,984.8	0.6806	15,804,202.3
	1980	2,324,000.0	26,310,212.9	0.6302	16,580,696.2
	1981	2,482,000.0	32,221,790.3	0.5835	18,801,414.6
	1982	2,652,000.0	41,774,310.3	0.5403	22,570,659.9
	1983	2,835,000.0	56,703,426.4	0.5002	28,363,053.9
	1984	3,031,000.0	78,891,076.7	0.4632	36,542,346.7
	1985	3,242,000.0	105,329,077.8	0.4289	45,175,641.5
Total		25,882,000.0	428,011,555.5	-	236,389,507.1
3	1975		24,060,496.3	0.9259	22,277,613.5
	1976	3,293,000.0	27,178,610.2	0.8573	23,300,222.5
	1977	3,729,000.0	35,369,290.0	0.7938	28,076,142.4

Table 6.1. Forecasted present worth of annual optimum total fuel costs, in dollars, for the companies with independent optimum operation for the years from 1975 to 1985

ł

Table 6.1. Continued.

•

Company No.	Year	Annual Energy Generation (MWh)	Total Fuel Costs (\$)	Present Worth Factor	Present Worth of Total Fuel Costs (\$)
	1978	4,124,000.0	39,943,010.1	0.7350	29,358,112.4
	1979	4,432,000.0	45,759,035.5	0.6806	31,144,212.1
	1980	4,742,000.0	54,504,213.7	0.6302	34,348,555.5
	1 981	5,116,000'.0	60,807,657.4	0.5835	35,481,268.1
	1982	5,516,000.0	71,632,133.7	0.5403	38,702,841.8
	1983	5,929,000.0	84,990,860.4	0.5002	42,512,428.4
	1 98 4	6,392,000.0	101,373,117.1	0.4632	4 6, 956,027.8
	1985	6,898,000.0	120,083,720.2	0.4289	51,503,907.6
Total		53,085,000.0	665,644,354.6		383,661,332.1
4	1975	3,178,000.0	61,779,607.2	0.9259	57,201,738.3
	1976	3,369,000.0	71,976,832.7	0.8573	61,705,738.7
	1977	3,571,000.0	57,684,841.3	0.7938	45,790,227.0
	1978	3,785,000.0	64,491,834.8	0.7350	47,401,498.6
	1979	4,013,000.0	72,667,958.7	0.6806	49,457,812.7
	1980	4,253,000.0	85,103,182.7	0.6302	53,632,025.7
	1981	4,508,000.0	99,509,699.0	0.5835	58,063,909.4
	1982	4,779,000.0	116,261,979.9	0.5403	62,816,347.7
	1983	5,065,000.0	137,915,424.9	0.5002	68,985,295.5
	1984	5,363,000.0	171,884,571.2	0.4632	79,616,933.4
	1985	5,692,000.0	215,929,802.4	0.4289	92,612,292.3
Total		47,576,000.0	1,155,205,739.2		677,283,819.3
5	1975	3,802,855.1	19,910,254.8	0.9259	18,434,904.9
	1976	4,101,635.3	21,760,422.2	0.8573	18,655,210.0
	1977	4,488,260.4	26,253,422.2	0.7938	20,839,966.5
	1978	5,308,937.9	39,000,801.8	0.7350	28,665,589.3
	1979	5,050,422.2	37,308,114.0	0.6806	25,391,902.4
	1980	5,492,763.8	46,509,380.7	0.6302	29,310,211.7
	1981	5,963,225.3	57,379,376.7	0.5835	33,480,866.3

Table 6.1. Continued.

Company No.	Year	Annual Energy Generation (MWh)	Total Fuel Costs (\$)	Present Worth Factor	Present Worth of Total Fuel Costs (\$)
	1982	6,363,543.8	69,026,460.3	0.5403	37,294,936.5
	1983	6,674,182.6	97,170,171.1	0.5002	48,604,519.6
	1984	7,105,690.8	98,466,497.3	0.4632	45,609,681.6
	1985	7,679,690.8	179,357,073.8	0.4289	76,926,249.0
Total		62,031,208.0	692,141,974.8		383,214,097.8
6	1975	1,037,144.9	6,013,273.0	0.9259	5,567,683.5
	1976	1,041,364.7	6,499,356.7	0.8573	5,571,898.5
	1977	1,049,739.6	7,089,517.3	0.7938	5,627,658.8
	1978	616,062.1	8,981,029.9	0.7350	6,601,057.0
	1979	1,289,577.8	11,702,539.8	0.6806	7,964,746.6
	1980	1,293,236.2	12,606,901.0	0.6302	7,944,869.0
	1981	1,298,774.7	13,651,152.0	0.5835	7,965,447.2
	1982	1,411,456.2	16,951,145.0	0.5403	9,158,703.6
	1983	1,645,817.4	27,415,397.3	0.5002	13,713,181.7
	1984	1,854,309.2	39,505,074.9	0.4632	18,298,750.7
	1985	1,854,309.2	42,264,429.8	0.4289	18,127,213.9
Total		14,391,792.0	153,175,137.3		106,541,216.5
7	1975	3,810,000.0	19,229,380.0	0.9259	17,804,482.9
	1976	4,111,000.0	21,274,970.9	0.8573	18,239,032.6
	1977	4,446,000.0	24,072,030.7	0.7938	19,108,378.0
	1978	4,801,000.0	28,044,675.9	0.7350	20,612,836.8
	1979	5,185,000.0	32,012,400.1	0.6806	21,787,639.5
	1980	5,600,000.0	36,285,218.9	0.6302	22,866,945.0
	1981	6,048,000.0	42,247,440.1	0.5835	24,651,381.3
	1982	6,532,000.0	48,341,906.7	0.5403	26,119,132.2
	1983	7,054,000.0	56,225,060.0	0.5002	28,123,775.0
	1984	7,619,000.0	67,245,772.8	0.4632	31,148,242.0

.

۰.

Table 6.1. Continued.

-

Company No.	Year	Annual Energy Generation (MWh)	Total Fuel Costs (\$)	Present Worth Factor	Present Worth of Total Fuel Costs (\$)
	1985		87,267,057.0	0.4289	37,428,840.8
Total		64,034,000.0	462,744,313.1	-	267,890,840.8
8	1975	1,919,000.0	9,339,519.7	0.9259	8,647,461.3
	1976	2,087,000.0	14,714,907.0	0.8573	12,615,089.8
	1977	2,306,000.0	30,815,533.7	0.7938	24,461,370.7
	1 978	2,506,000.0	45,472,099.8	0.7350	33,421,993.4
	1 979	2,723,000.0	62,761,414.9	0.6806	42,715,419.0
	1980	2,959,000.0	83,641,969.4	0.6302	52,711,169.1
	1981	3,217,000.0	108,749,941.7	0.5835	63,455,591.0
	1982	3,499,000.0	133,765,202.4	0.5403	72,273,338.9
	1983	3,785,000.0	178,579,173.9	0.5002	89,325,302.8
	1984	4,094,000.0	213,501,967.4	0.4632	98,894,111.3
	1985	4,428,000.0	261,275,680.2	0.4289	112,061,139.2
Total		33,523,000.0	1,142,617,410.3	-	610,581,986.5
9	1975	285,000.0	2,456,700.0	0.9259	2,357,989.5
	1976	300,000.0	2,760,000.0	0.8573	2,366,148.0
	1977	325,000.0	3,175,250.0	0.7938	2,520,513.5
	1978	360,000.0	3,888,000.0	0.7350	2,857,680.0
	1979	395,000.0	4,542,500.0	0.6806	3,091,625.5
	1980	410,000.0	5,043,000.0	0.6302	3,178,098.6
	1981	430,000.0	5,684,600.0	0.5835	3,316,964.1
	1982	445,000.0	6,292,300.0	0.5403	3,399,729.7
	1983	475,000.0	7,153,500.0	0.5002	3,578,180.7
	1984	475,000.0	7,699,750.0	0.4632	3,566,524.2
	1985	475,000.0	8,193,750.0	0.4289	3,514,299.4
Total		4,375,000.0	56,889,350.0	-	33,747,753.2

Company No.	Year	Optimum Annual Energy Generation (MWh)	Total Fuel Costs (\$)	Present Worth Factor	Present Worth of Total Fuel Costs (\$)
1	1975	3,986,816.6	41,089,020.6	0.09259	38,044,324.2
	1976	4,684,006.8	49,570,240.6	0.8573	42,496,567.3
	1977	4,694,083.1	53 ,383,863.7	0.7938	42,376,111.0
	1978	5,016,601.3	59,283,747.0	0.7350	43,573,554.0
	1979	5,630,027.3	68,281,833.5	0.6806	46,472,615.9
	1980	5,643,158.4	75,585,160.2	0.6302	47,633,768.0
	1981	5,653,302.2	81,445,742.1	0.5835	47,523,590.5
	1982	5,848,348.1	99,755,307.6	0.5403	53,897,792.7
	1983	6,518,557.9	98,778,658.5	0.5002	49,409,085.0
	1984	6,796,212.0	130,311,706.7	0.4632	60,360,382.5
	1985	9,230,328.0	316,828,181.9	0.4289	135,887,607.2
Total		63,7 0 1,909.7	1,074,342,356.0	-	607,675,398.3
2	1975	1,564,101.4	12,521,013.9	0.9259	11,593,206.8
	1976	1,169,756.0	10,797,673.5	0.8573	9,256,845.5
	1977	2,359,017.3	19,897,344.6	0.7938	15,794,512.1
	1978	2,389,631.0	23,139,312.8	0.7350	17,007,394.9
	1979	2,395,006.0	24,955,512.3	0.6806	16,984,721.7
	1980	2,398,922.9	26,945,533.2	0.6302	16,981,075.0
	1981	2,402,979.3	29,104,983.8	0.5835	16,982,758.0
	1982	2,418,453.7	31,846,037.3	0.5403	17,206,414.0
	1983	2,483,307.4	48,985,192.7	0.5002	24,502,393.4
	1984	2,746,851.8	52,471,384.9	0.4632	24,304,745.5
	1985	2,749,165.0	56,138,274.2	0.4289	24,077,705.8
Total		25,077,191.8	336,802,263.1	-	194,691,772.7
3	1975	4,079,800.8	31,502,253.9	0.9259	29,167,936.9
	1976	5,792,580.3	42,757,171.3	0.8573	36,655,723.0

Table 6.2. Forecasted present worth of annual optimum total fuel costs, in dollars, for the companies with optimum Iowa Pool operation for the years from 1975 to 1985

•

.

Table 6.2. Continued.

Company No.	Year	Optimum Annual Energy Generation (MWh)	Total Fuel Costs (\$)	Present Worth Factor	Present Worth of Total Fuel Costs (\$)
	1977	6,270,588.8	53,031,688.3	0.7938	42,096,554.2
	1978	6,077,120.5	55,147,016.6	0.7350	40,533,057.2
	1979	7,156,472.3	71,776,164.2	0.6806	48,850,857.4
	1980	7,541,337.5	79,915,323.1	0.6302	50,362,636.6
	1981	7,410,128.3	84,114,871.2	0.5835	49,081,027.4
	1982	7,612,856.8	97,145,853.7	0.5403	52,487,904.8
	1983	7,632,739.0	108,075,548.2	0.5002	54,059,389.2
	1984	8,560,859.6	174,564,928.0	0.4632	80,858,474.7
	1985	8,563,351.2		0.4289	82,049,159.6
Total		75,272,230.0	989,332,193.1	-	556,202,721.0
4	1975	1,985,395.4	38,799,746.0	0.9259	35,924,684.8
	1976	1,816,125.5	40,646,351.7	0.8573	34,846,117.3
	1977	1,843,182.7	44,221,003.0	0.7938	35,102,632.2
	1978	3,672,982.7	51,148,802.5	0.7350	37,594,369.8
	1979	2,459,124.7	57,877,409.3	0.6806	39,391,364.8
	1980	3,986,377.7	77,472,487.0	0.6302	48,823,161.3
	1981	4,018,402.4	83,820,799.4	0.5835	48,909,436.5
	1982	4,038,593.5	90,338,322.1	0.5403	48,809,795.4
	1983	4,905,725.9	130,037,050.9	0.5002	65,044,532.9
	1984	4,938,626.8	156,654,733.0	0.4632	72,562,472.3
	1985	5,196,643.9	167,734,301.8	0.4289	71,941,242.0
Total		38,861,181.2	938,751,006.7	-	538,949,809.3
5	1975	4,268,346.0	21,237,596.5	0.9259	19,663,890.6
	1976	4,256,201.4	22,265,568.5	0.8573	19,088,271.9
	1977	4,236,296.4	23,194,579.1	0.7938	18,411,856.9
	1978	4,252,257.0	23,730,223.3	0.7350	17,441,714.1
	1979	4,266,950.5	26,240,101.4	0.6806	17,859,013.0
	1980	4,284,712.8	27,994,115.5	0.6302	17,641,891.6

Company No.	Year	Optimum Annual Energy Generation (MWh)	Total Fuel Costs (\$)	Present Worth Factor	Present Worth of Total Fuel Costs (\$)
<u></u>	1981	4,977,233.9	40,443,596.1	0.5835	23,598,838.3
	1982	6,471,837.0	71,660,593.7	0.5403	38,718,218.8
	1983	6,924,422.4	93,284,370.2	0.5002	46,660,842.0
	1984	6,918,123.1	98,466,497.3	0.4632	45,609,681.6
	1985	6,911,823.8	103,921,870.1	0.4289	44,572,090.1
Total		57,768,204.3	552,439,111.7	-	309,266,308.9
6	1975	1,040,830.9	6,033,912.0	0.9259	5,586,799.1
	1976	1,044,191.5	6,516,289.2	0.8573	5,586,414.7
	1977	1,049,739.6	7,089,514.7	0.7938	5,627,656.8
	1978	388,494.4	5,906,590.2	0.7350	4,341,343.8
	1979	1,062,888.8	7,714,104.7	0.6806	5,250,219.7
	1980	1,047,139.6	9,770,971.8	0.6302	6,157,666.4
	1981	1,298,774.7	13,635,496.3	0.5835	7,956,312.1
	1982	1,411,456.2	16,951,145.0	0.5403	9,158,703.6
	1983	1,854,309.2	36,918,453.5	0.5002	18,466,610.4
	1984	1,854,309.2	39,505, 0 74.9	0.4632	18,298,750.7
	1985	1,854,309.2	42,264,429.7	0.4289	18,127,213.9
Total		13,906,443.3	192,305,982.0	-	104,557,691.2
7	1975	3,878,235.5	19,692,699.1	0.9259	18,233,470.1
	1976	4,211,134.6	21,812,693.7	0.8573	18,700,022.3
	1977	4,538,600.8	24,765,610.8	0.7938	19,658,941.9
	19 78	5,064,779.7	30,117,991.9	0.7350	22,136,724.0
	1979	6,277,068.0	40,382,856.8	0.6806	27,484,572.3
	1980	6,437,928.1	44,213,754.8	0.6302	27,863,508.3
	1981	7,479,280.1	57,590,784.6	0.5835	33,604,222.8
	1982	7,751,723.6	62.714,092.3	0.5403	33,884,424.0
	1983	8,320,335.5	84,735,330.3	0.5002	42,384,612.2
	1984	9,241,096.4	134,911,307.4	0.4632	62,490,917.6

Table 6.2. Continued.

· .

Company No.	Year	Optimum Annual Energy Generation (MWh)	Total Fuel Costs (\$)	Present Worth Factor	Present Worth of Total Fuel Costs (\$)
	1985	9,934,020.7	144,084,686.0	0.4289	61,797,921.8
Total		73,134,203.0	665,021,807.7	-	368,239,337.3
8	1975	1,854,909.7	8,421,481.7	0.9259	7,797,449.9
	1976	1,865,359.9	9,050,569.8	0.8573	7,759,053.5
	1977	1,840,965.3	11,019,501.8	0.7938	8,747,280.5
	1978	1,848,138.6	11,994,372.3	0.7350	8,815,863.6
	1979	1,854,980.5	12,776,886.6	0.6806	8,695,949.0
	1980	1,864,488.9	12,787,086.3	0.6302	8,058,421.8
	1981	1,871,806.0	14,606,780.5	0.5835	8,523,056.4
	1982	1,973,608.0	17,681,298.2	0.5403	9,553,205.4
	1983	2,162,040.0	19,357,008.4	0.5002	9,682,375.6
	1984	2,015,781.8	20,937,061.6	0.4632	9,698,046.9
	1985	2,015,781.8	22,107,211.7	0.4289	9,481,783.1
Total		21,167,860.5	160,739,258.9	-	96,812,485.7
9	1975	-	-	-	e .
	1976	-	-	-	-
	1977	-	-	-	-
	1978	-	-	-	-
	1979	-	-	-	-
	1980	404,896.2	4,980,223.2	0.6302	3,138,536.7
	1981	504,576.0	6,670,494.7	0.5835	3,892,233.7
	1982	504,576.0	7,134,704.6	0.5403	3,854,880.9
	1983	504,576.0	7,598,914.5	0.5002	3,800,977.0
	1984	504,576.0	8,179,176.9	0.4632	3,788,594.7
	1985	504,576.0	8,703,936.0	0.4289	3,733,118.2
Total		2,927,776.2	43,267,449.9	-	22,208,341.2

	Total Optimum	Companies Indepen	Operating Idently	Companies Operating as a Pool		
Year	Energy Generation (MWh)	Total Fuel Costs (\$)	Present Worth of Total Fuel Costs (\$)	Total Fuel Costs (\$)	Present Worth of Total Fuel Costs (\$)	
1975	22,527,000.0	198,240,011.8	183,633,760.7	179,297,723.7	166,011,762.4	
1976	24,432,000.0	231,478,245.8	198,446,300.3	203,416,558.3	174,389,015.5	
1977	26,591,000.0	263,204,440.4	208,931,684.8	236,603,106.0	187,815,545.6	
1978	28,710,000.0	314,651,018.7	231,268,798.8	260,468,056.6	191,444,021.3	
1979	30,798,000.0	378,565,510.8	257,651,684.7	310,004,868.8	210,953,313.8	
1980	33,019,000.0	476,834,192.3	300,500,908.0	359,664,655.1	226,660,665.7	
1981	35,459,000.0	554,626,355.4	323,624,828.5	411,433,548.7	240,080,475.7	
1 982	38,075,000.0	663,312,268.1	358,387,617.9	495,227,354.5	267,571,339.6	
1983	40,816,000.0	810,321,604.1	405,322,866.4	627,770,527.2	314,010,817.7	
1984	43,833,000.0	989,095,532.7	458,149,050.8	816,001,870.7	377,972,066.5	
1985	46,963,000.0	1,276,391,447.0	547,444,292.1	1,053,084,266.0	451,667,841.7	

Table 6.3. Forecasted present worth of annual optimum total fuel costs, in dollars, for optimum independent operation of the companies, and for their cooperative optimum operation as the Iowa Pool for the years from 1975 to 1985

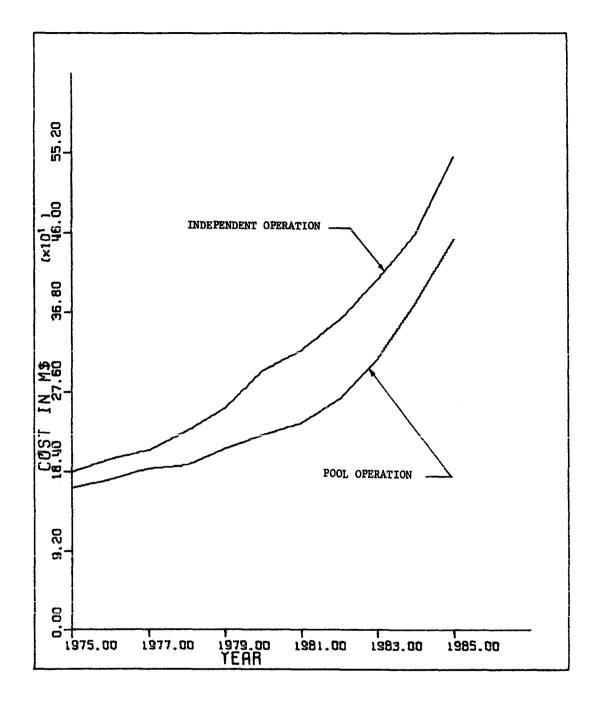


Figure 6.1. Forecasted present worth of annual optimum total fuel costs for optimum independent operation of the companies and for their cooperative optimum operation as the Iowa Pool for the years from 1975 to 1985, in millions of dollars per year

. '

panies and, finally, to the consumer, if the companies act as a united group to meet their customers' electrical energy demand in an optimum fashion. Table 6.4 and Figure 6.2 show, in percent per year, the annual total fuel cost savings of optimum operation of the generating units of the companies as the Iowa Pool, compared to optimum independent operation of the generating units for each company. The computer outputs for the Iowa Pool application of the model are presented in Appendix H.

In the Iowa Pool's optimum operation, each company generates electrical energy according to the efficiency of its generating units and the costs and qualities of the fuels used. While, in some years some of the companies generate less electrical energy than with their independent operations, some others generate more energy than they normally would. Again, the energy generation totally depends on the efficiency of the units and on the cost and quality of the fuels used throughout the years, which are changeable. For example, Figure 6.3 shows the annual optimum electrical energy generation in GWh by company 1 as a result of independent operation and Iowa Pool operation for the years from 1975 to 1985. As can be seen from this figure, company 1 produces much less energy with Pool operation than with independent operation for the years from 1979 to 1984. But, after the year 1984, it generates much more energy under Pool operation than under independent operation, because of planned new nuclear units. Figure 6.4 shows the present worth of annual optimum total fuel costs for company 1 with independent operation and with Iowa Pool operation for the years from 1975 to 1985 in millions of dollars. Nevertheless, under the Pool operation, since each company shares the total fuel costs of the Pool

Year	Total Fuel Cost Savings (%)	
1975	9.6	
1976	12.1	
1977	10 .1	
1978	17.2	
1979	18.1	
1980	24.6	
1981	25.8	
1982	25.3	
1983	22.5	
1984	17.5	
1985	17.5	

Table 6.4. Forecasted annual total fuel cost savings of optimum operation of the companies as the Iowa Pool compared to optimum independent operation of the companies, in percent per year

Figure 6.2. Forecasted annual total fuel cost savings of cooperative optimum operation of the companies as the Iowa Pool, compared to optimum independent operation of the companies in percent per year

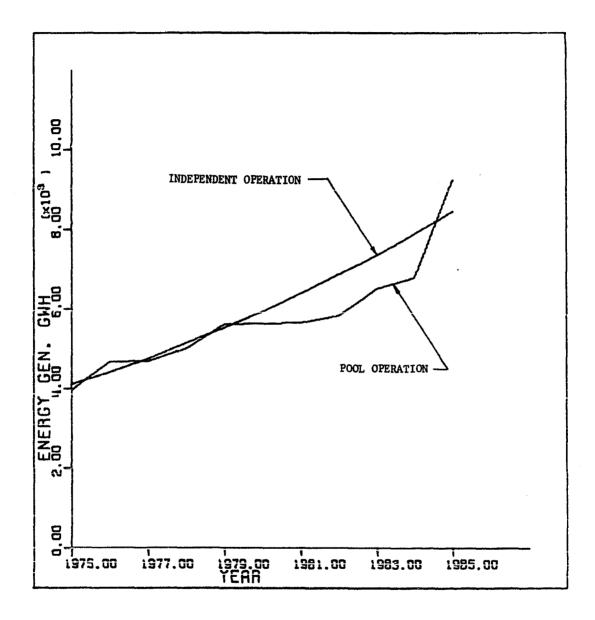


Figure 6.3. Forecasted annual optimum electrical energy generation by company 1 as a result of independent operation and Iowa Pool operation for the years from 1975 to 1985, in GWh

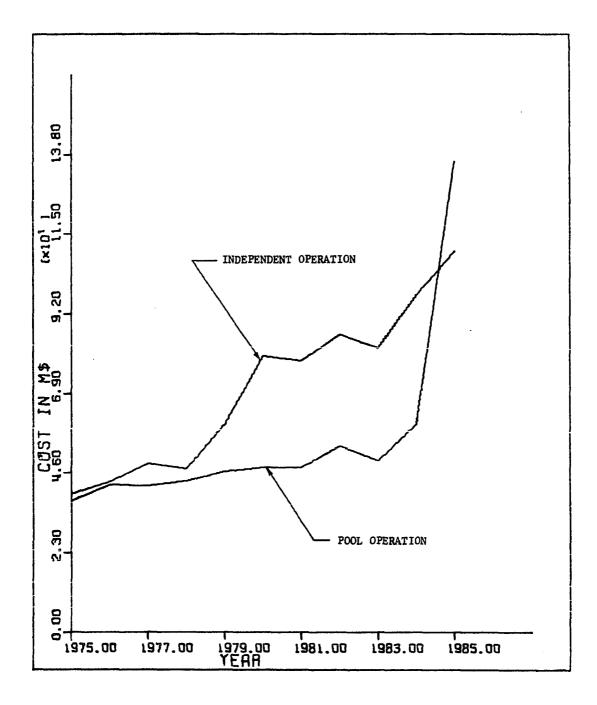


Figure 6.4. Forecasted present worth of annual optimum total fuel costs for optimum usage of the units of company 1 with independent operation, and with Iowa Pool operation, from 1975 to 1985, in millions of dollars

according to its own energy demands, the fuel cost savings of each company, in dollars per MWh, will be the same (See Table 6.4 and Figure 6.2).

Some considerable savings can be achieved in energy and in the total cost of energy by conservation measures. The recent emphasis on voluntary measures of energy conservation in response to potential energy shortages created by the cut-off of oil supplies from the Middle East, yielded a 5 percent reduction in energy demand by simple conservation measures (134). Table 6.5 and Figure 6.5 show the annual electrical energy requirements in MWh for company 1 with various conservation levels.

As an example to illustrate the usefulness of the computerized model to investigate a wide variety of policies rapidly and economically, the following study has been made. In this study, the possible savings in energy costs have been investigated with decreasing crude oil prices at various conservation levels, applying the model to company 1. In this study, three crude oil prices have been assumed, as previously studied in the Project Independence Report (21). These prices are four dollars per barrel, seven dollars per barrel, and the present price of eleven dollars per barrel. While the crude oil prices are changing, the other fuel prices have been assumed to remain the same. The results of this application are summarized in Table 6.6. The table shows the total fuel costs of optimum electrical energy generation using the generating units of company 1 for various fuel prices and for various conservation levels, in dollars, over an 11 year period from 1975 to 1985. These results are plotted in Figure 6.6. Table 6.7 shows total fuel cost savings, in percent, for optimum electrical energy generation for company 1 for various fuel prices

**	Annual Electrical Energy Generations (MWh)					
Year	0%	5%	10%	15%	20%	25%
1975	4,111,000	3,905,450	3,699,900	3,494,350	3,288,800	3,083,250
1976	4,423,000	4,201,850	3,980,700	3,759,550	3,538,400	3,317,250
1977	4,769,000	4,530,550	4,292,100	4,053,650	3,815,200	3,576,750
1978	5,152,000	4,893,450	4,635,900	4,378,350	4,120,800	3,863,250
1979	5,534,000	5,257,300	4,980,600	4,703,900	4,427,200	4,150,500
1980	5,945,000	5,647,750	5,350,500	5,053,250	4,756,000	4,458,750
1981	6,396,000	6,076,200	5,756,400	5,436,600	5,116,800	4,797,000
1982	6,877,000	6,533,150	6,189,300	5,845,300	5,501,600	5,157,750
1983	7,353,000	6,985,350	6,617,700	6,250,050	5,882,400	5,512,750
1984	7,893,000	7,498,350	7,103,700	6,709,050	6,314,400	5,919,750
1985	8,466,000	8,042,700	7,619,400	7,196,100	6,772,800	6,349,500

Table 6.5. Annual electrical energy generation of company 1 for various conservation levels, in MWh

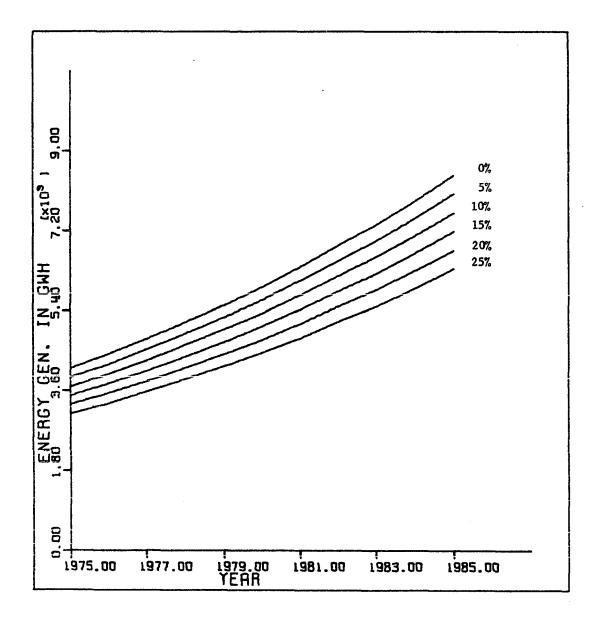


Figure 6.5. Annual electrical energy generation of company 1 for various conservation levels, in MWh

_ •	Conserved	Total Optimum Fuel Costs for Various Future Fuel Prices			
B's	Energy (%)	(at 11 \$/Bb1 oi1) (\$)	(at 7 \$/Bb1 oil) (\$)	(at 4 \$/Bb1 oi1) (\$)	
В	0.0	1,382,359,757.9	1,128,322,565.8	801,714,076.7	
B2	5.0	1,020,026,912.2	821,801,704.9	606,111,030.3	
B3	10.0	869,987,888.6	709,448,667.0	545,116,529.1	
B4	15.0	756,815,755.3	626,832,609.2	494,179,540.9	
B5	20.0	688,535,352.3	567,652,738.8	444,279,046.0	
B6	25.0	645,224,043.3	531,896,376.4	416,233,325.6	

Table 6.6. Total fuel costs, in dollars, of optimum electrical energy generation for company 1 for various fuel prices and conservation levels, in percent, over an 11 year period from 1975 to 1985

Table 6.7. Total fuel cost savings, in percent, for optimum electrical energy generation for company 1, for various fuel prices and conservation levels, in percent, over an 11 year period from 1975 to 1985

- 1	Conserved Energy (%)	Total Fuel Cost Savings for Various Future Fuel Prices			
B's		(at 11 \$/Bb1 oi1) (%)	(at 7 \$/Bb1 oil) (%)	(at 4 \$/Bb1 oil) (%)	
В	0.0	0.0	18.4	42.0	
B2	5.0	26.2	40.6	56.2	
B3	10.0	37.0	48.7	60.5	
B4	15.0	45.3	54.7	64.3	
B5	20.0	50.2	58.9	67.9	
B6	25.0	53.3	61.5	69.9	

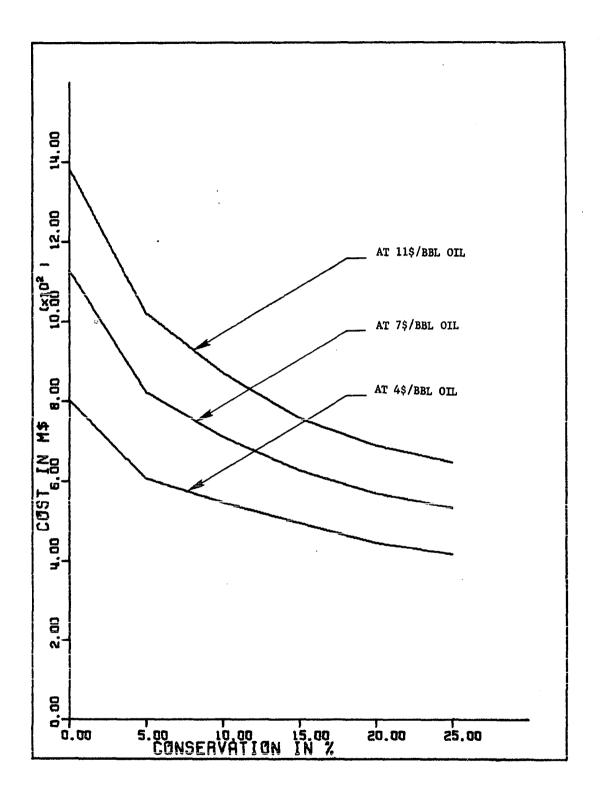


Figure 6.6. Total optimum fuel costs for various fuel prices and conservation levels for company 1 over an 11 year period from 1975 to 1985, in millions of dollars

and conservation levels in percent, compared to present fuel prices and a zero conservation level, over an 11 year period from 1975 to 1985. The results are plotted on Figure 6.7.

Table 6.7 and Figure 6.7 show that, if a 5 percent conservation level is achieved, at the present crude oil prices, the total fuel cost savings of company 1 is 26.2 percent. If 25 percent conservation level is achieved, then the total fuel cost savings is 53.3 percent. If the crude oil prices decrease to seven dollars per barrel, at a 5 percent conservation level, the total fuel cost savings is 40.6 percent; at a 25 percent conservation level the total fuel cost savings is 61.5 percent. The main reason for these savings is that the decreasing demand for electrical energy decreases the necessity of operation of the less efficient or more expensively fueled generating units.

Because of the number of assumptions involved, the results of this application of the model may not be precisely accurate. Nevertheless, the usefulness of the model as a tool for making comparative studies for sensitivity analyses is well illustrated by these examples.

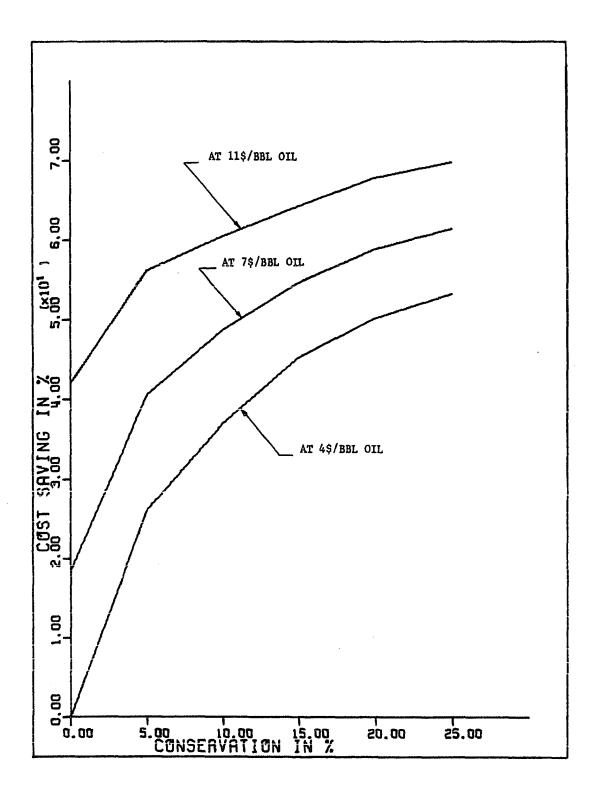


Figure 6.7. Total optimum fuel cost savings for various fuel prices and conservation levels for company 1, compared to present fuel prices and a zero conservation level over an 11 year period from 1975 to 1985, in percent

VII. SUMMARY AND CONCLUSIONS

This study covers the entire energy field with special emphasis on electric power. The sources of energy and the projected energy supply and demand to the year 2000 on the basis of statistical data have been reviewed, and a survey of U. S. energy forecasts has been made in order to make a comparison between projections. Some energy related issues are discussed in the light of these projections.

In order to evaluate rapidly the consequences of different proposed energy policies, a computerized electrical energy model has been developed in this thesis. The necessary mechanism is built into the model to capture accurately the dynamics of changes. Furthermore, if one wishes to answer the many "what if" questions, the computerized electrical energy model has a consistent framework within which to investigate a wide variety of policies rapidly and economically.

The model is basically built for the electric power industry to minimize the cost of energy used for electric generation through optimum allocation of various fuel mixes over a period of n years, where the energy is subject to a large number of physical and environmental constraints.

The model has been applied to each of the nine utility companies in the State of Iowa individually and together as an Iowa Pool.

The results show that the computerized model is a promising tool in long range power systems planning. It is also demonstrated that there can be a considerable savings to the companies and, finally, to the consumer, if the companies act as a united group to meet their customers' electrical energy demand in an optimum fashion.

The FAM model is quite efficient and economical. For example, the program requires 96K words of computer core storage, 1.18 minutes of computer CPU time, and 1063 iterations to reach an optimum solution for the Iowa Pool program which has 1287 real variables, 45 LP rows, and 3713 LP elements, at a cost of only 15.14 dollars.

VIII. RECOMMENDED FUTURE WORK

In order to make this model a more useful tool in long range power system planning, capitalization costs, operating and maintenance costs should be added to the fuel cost to determine the optimum generation plans with the lowest annual cost. The model can be improved easily to evaluate long range generation patterns not only for the units which are already installed but for those to be installed in the future. Of course, there may be a better way to formulate the optimization model than we have used, nevertheless, this study presents a valuable start in this direction.

Some further work is needed to apply the model into a pool arrangement. For example, in order to distribute the economic benefits of shared generation, in a manner which all can accept as fair and equitable, an allocation method should be developed. Also, a fair penalty system should be established among the pool members to fairly penalize those who, for private or internal reasons, choose to not cooperate in optimum pool development. A method should also be developed to determine the allocation of capacity benefits and costs resulting from the additional installation of transmission facilities among the pool members.

Finally, it should be recognized that pool planning studies of this kind require both a commitment to cooperate in this work and a willingness to share information. To this end it is recommended that the Iowa utilities establish an "Iowa Energy Data System" which can be used to collect, store, and evaluate data which would be available to all utilities for the contribution of optimal growth plans.

IX. REFERENCES

- Quinn, J. B. "Technological Forecasting." <u>Harvard Business Review</u>, 39 (March 1967): 106-115.
- 2. Dalal, W. "Environmental Energy and the Need for New Technology." Science, 40 (1972): 63-76.
- 3. Guyol, N. B. <u>The World Electric Power Industry</u>. Berkeley, California: University of California Press, 1969.
- 4. Darmstadter, J. <u>Energy in the World Economy</u>. Baltimore: The Johns Hopkins Press, 1971.
- 5. Felix, F. World Markets of Tomorrow. New York, New York: Harper & Row, Co., 1972.
- Freeman, S. I. "Technical Alternatives for Energy Management." <u>Science</u>, 41 (1972): 57-65.
- Cook, E. "The Flow of Energy in an Industrialized Society." Scientific American, 224 (1971): 134-144.
- 8. Meadows, D. H., Meadows, D. L. and Randers, J. <u>The Limits to Growth</u>. New York, New York: Universe Books Co., 1972.
- Altman, M., Wolf, M. and Telkes, M. "The Energy Resources and Electric Power Situation in the United States." <u>Energy Conversion</u>, 12 (1971): 53-64.
- 10. Hottel, H. C. and Howard, J. B. <u>New Energy Technology Some Facts</u> and Assessments. Cambridge, Mass.: The MIT Press, 1971.
- 11. Starr, C. "Energy and Power." <u>Scientific American</u>, 224 (1971): 39-45.
- Gaucher, L. P. "Energy in Perspective." <u>Chemical Technology</u>, 3 (March 1971): 153-158.
- Morrison, W. E. and Readling, C. L. <u>An Energy Model for the United</u> <u>States</u>. U. S. Dept. of the Interior, Bureau of Mines, No. 8384, 1968.
- 14. Ritchings, F. A. "Trends in Energy Needs." A paper presented at the Annual ASME Meeting, New York, 1971.
- 15. Cook, C. S. "Energy: Planning for the Future." <u>American Scientist</u>, 61 (1973): 61-65.

- Landsberg, H. H. and Schurr, S. H. <u>Energy in the United States</u>, <u>Sources</u>, Uses and Policy Issues. New York, New York: Random House, 1968.
- Dupree, W. G. and West, J. A. <u>United States Energy Through the Year</u> <u>2000</u>. U. S. Department of the Interior, Washington, D.C.: U. S. Government Printing Office, 1972.
- U. S. Energy Outlook An Initial Appraisal, 1971-1985. An Interim Report by the National Petroleum Council's Committee on U. S. Energy Outlook, Vol. 2, 1971.
- 19. <u>A Time to Choose America's Energy Future</u>. The Energy Policy Project of the Ford Foundation. Cambridge, Mass.: Ballinger Publishing Co., 1974.
- Megastar The Meaning of Energy Growth: An Assessment of Systems, <u>Technologies and Requirements</u>. NASA CR-120338, Auburn University Engineering Systems Design Summer Faculty Fellows, Auburn University, Auburn, Alabama, 1974.
- 21. <u>Project Independence Report</u>. Federal Energy Administration, Washington, D.C.: U. S. Government Printing Office, 1974.
- 22. Schurr, S. H. and Netschert, B. S. <u>Energy in the American Economy</u>, <u>1850-1975</u>. Baltimore: Johns Hopkins Press, 1960.
- 23. <u>1972 Business and Economic Charts</u>. Statistical Reference Book. Chicago: Ebasco Service, Inc., 1972.
- 24. Gonen, T. and Anderson, P. M. "Energy Dilemma in the U. S. and Economical Production of Electric Energy from Western Coal." Annual Progress Report of the Electric Power Affiliate Research Program. Ames, Iowa: Engineering Experiment Station, Iowa State University of Science and Technology, 1974.
- Anderson, P. M. "The World's Energy Supply." Unpublished Class Notes. Ames, Iowa: Department of Electrical Engineering, I.S.U., 1966.
- 26. Hammond, R. P. "Nuclear Power Risks." <u>American Scientist</u>, 62 (1974): 155-160.
- 27. Cheney, E. S. "U. S. Energy Resources: Limits and Future Outlook." American Scientist, 62 (1974): 14-22.
- Szego, G. C. <u>The U. S. Energy Problem</u>. Vol. 2, Appendices Part A. Warrenton, Virginia: Inter Technology Co., 1971.

- 29. Outlook for Energy in the United States to 1985. New York: Chase Manhattan Bank, Energy Economics Division, 1972.
- 30. Szego, G. C. <u>The U. S. Energy Problem</u>. Vol. 1. Warrenton, Virginia: Inter Technology Co., 1972.
- 31. Hauser, L. G., Comtois, W. H. and Boyle, R. R. "The Effect of Fuel Availability on Future R & D Programs in Power Generation." Proc. of the American Power Conference, 34 (1972): 382-393.
- 32. "If You are a Businessman, This Chart May be the Shape of Your Future." U. S. News and World Report, 110 (May 1972): 37-44.
- 33. "Population and the American Future." A Summary of the Final Report and Recommendations by the U. S. Commission on Population Growth and the American Future. <u>New York Times</u>, (April 30, 1972).
- 34. "The Surprising Decline in the Birthrate." <u>Business Week</u>, 2231 (1972): 66-67.
- 35. U. S. Department of Commerce, Bureau of Census. <u>Statistical Abstract</u> of the U.S., 1971. Washington, D.C.: U.S. Government Printing Office, 1971.
- 36. <u>Energy, The Ultimate Resource</u>. Washington, D.C.: U. S. Government Printing Office, 1971.
- 37. Drucker, P. F. "Saving the Crusade." <u>Harper's Magazine</u>, 244 (1972): 66-69.
- 38. Bright, J. R. <u>Technological Forecasting for Industry and Government</u>. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1968.
- 39. Landsberg, H. H. <u>Natural Resources for U. S. Growth</u>. Baltimore: Johns Hopkins Press, 1964.
- 40. Kahn, H. and Wiener, A. J. <u>The Year 2000 A Framework for Specu-</u> lation on the Next Thirty-three Years. New York, New York: Macmillan Co., 1968.
- 41. National Academy of Engineering. <u>Engineering for the Resolution of</u> <u>the Energy-Environment Dilemma</u>. Washington, D.C.: National Academy of Sciences, 1972.
- 42. Summers, C. M. "The Conversion of Energy." <u>Scientific American</u>, 224 (March 1971): 151-155.
- 43. "The High Price of More Electric Power." <u>Business Week</u>, 2242 (1972): 54-56.

- 44. "EEI President Criticizes EPA's Sulfur Oxide Emission Standard." Statement by W. Donham Crawford before the Subcommittee on Air and Water Pollution, U. S. Senate Committee on Public Works. <u>News</u> <u>Release</u>, (February 25, 1972).
- 45. Netschert, B. C. "The Year 2000 Living with Growth." <u>Electric</u> Light and Power, 50, No. 17 (1972): 67-71.
- 46. Stelzer, I. M. "The Fuel Situation." <u>EEI Bulletin</u>, 40, No. 4 (1973): 178-181.
- 47. Lessing, L. "Why the U. S. Lags in Technology." <u>Fortune</u>, 85, No. 4 (1972): 69-73.
- 48. Salihi, J. T. "The Electric Car, Fact and Fancy." <u>Electric Light</u> and <u>Power</u>, 50, No. 18 (1972): 45-49.
- 49. Sporn, J. T. "Options on the Way to the Future." Special Publication of the IEEE Power Engineering Society. 71-M-31-PWR, 1971.
- 50. Berkowitz, D. A. and Squires, A. M. <u>Power Generation and Environmen-</u> tal Change. Cambridge, Massachusetts: MIT Press, 1971.
- 51. Heydinger, E. R. "Outlook for the U. S. Economy, Energy and Oil to 1980." Electric Light and Power, 50, No. 9 (1973): 47-51.
- 52. Toffler, A. <u>Future Shock</u>. New York, New York: Random House, Inc., 1970.
- 53. Hayakawa, S. I. "Talking Is Anyone Listening?" <u>EEI Bulletin</u>, 40, No. 4 (1972): 228-231.
- 54. The Foreign Policy Association. <u>Toward the Year 2018</u>. New York, New York: Cowles Education Corp., 1968.
- 55. Heer, J. E. and Hagerty, J. D. "Refuse Turns Resource." <u>IEEE</u> <u>Spectrum</u>, 11, No. 7 (July 1974): 83-86.
- 56. Nagel, T. J. "Electric Power's Role in the U. S. Energy Crisis." IEEE Spectrum, 11, No. 7 (July 1974): 69-72.
- 57. Christiansen, D. "The Critical Years." <u>IEEE Spectrum</u>, 11, No. 6 (June 1974): 38-42.
- 58. Jurgen, R. K. and Friedlander, G. D. "The Energy Outlook: Ways to Go." <u>IEEE Spectrum</u>, 11, No. 3 (March 1974): 83-92.
- 59. Friedlander, G. D. "The Fast-Breeder Reactor: When, Where, Why, and How?" <u>IEEE Spectrum</u>, 11, No. 2 (February 1974): 85-92.

- 60. Sporn, P. "The Indispensability of Research." A paper presented at the IEEE Conference on Research for the Electric Power Industry, Washington, D.C., December 11-14, 1972.
- Battelle Memorial Institute. <u>A Review and Comparison of Selected</u>
 U. S. Energy Forecasts. Washington, D.C.: U. S. Government
 Printing Office, 1970.
- 62. Gambs, G. C. <u>The Twentieth Century Fossil Fuel Crisis:</u> <u>Current and</u> <u>Projected Requirements</u>. New York, New York: Ford, Bacon and Davis, Inc., 1971.
- 63. Cook, D. C. "Providing a Reliable and Economic Future Power Supply." A paper presented at IEEE Winter Power Meeting, New York, New York, January 27, 1970.
- 64. Olmstead, L. M. "22nd Annual Electrical Industry Forecast." Electrical World, 176, No. 6 (1971): 41-45.
- 65. Federal Power Commission. <u>The 1970 National Power Survey, Part I.</u> Washington, D.C.: U. S. Government Printing Office, 1971.
- 66. Neter, J. and Wasserman, W. <u>Fundamental Statistics for Business and</u> Economics. Boston, Massachusetts: Allyn and Bacon, Inc., 1961.
- 67. Gregory, D. P. "A New Concept in Energy Transmission." <u>Public</u> <u>Utilities Fortnightly</u>, 89, No. 3 (1972): 27-31.
- 68. Bockris, O. M. "A Hydrogen Economy." <u>Science</u>, 176, No. 4041 (1972): 1323-1327.
- 69. Tanner, E. C. and Huse, R. A. "A Hydrogen-Electric Utility System with Particular Reference to Fusion as the Energy Source." 7th Intersociety Energy Conversion Engineering Conference Proceedings, p. 1323, 1972.
- 70. DeBeni, G. and Marchetti, C. "Hydrogen, Key to the Energy Market." Euro Spectra, 9, No. 2 (1970): 46-49.
- 71. Federal Power Commission. <u>Statistics of Privately Owned Electric</u> <u>Utilities in the United States, 1969</u>. Washington, D.C.: U.S. Government Printing Office, 1971.
- 72. <u>Statistical Yearbook of the Electric Utility Industry for 1970</u>. EEI Publication No. 71-25, 1971.
- 73. Gregory, D. P. "The Hydrogen Economy." <u>Scientific American</u>, 228, No. 1 (1973): 13-18.

- 74. Lessing, L. "The Coming Hydrogen Economy." Fortune, 86, No. 5 (1972): 138-143.
- 75. "Eco-Energy Studies and TEMPO." <u>Nuclear Engineering International</u>, 17, No. 198 (1972): 942-946.
- 76. Heredy, L. A. and Parkins, W. E. "Lithium-Sulfur Battery Plant for Power Peaking." IEEE Conference Paper C72-234-8. Presented at the IEEE Winter Power Meeting, New York, New York, February 4, 1972.
- 77. "EEI Sponsors Research on Advanced Storage Battery." <u>EEI Bulletin</u>, 40, No. 3 (1972): 117-123.
- 78. "High Energy Battery Promising for Electric Cars." <u>Electric Review</u>, 190, No. 21 (1972): 720-724.
- 79. Lueckel, W. J., Eklund, L. G., and Law, S. H. "Fuel Cells for Dispersed Power Generation." <u>IEEE Transactions</u>, PAS-92, No. 1 (1973): 230-235.
- 80. "Swedes to Build Air Storage Plant." <u>Electrical Review</u>, 190, No. 23 (1972): 800-807.
- 81. Olsson, E. K. A. "220 MW Air Storage Power Plant." <u>Mechanical</u> Engineering, 92, No. 11 (1970): 20-24.
- 82. "Gas Turbines: Increasingly Important." <u>Electrical World</u>, 173, No. 24, (1970): 38-42.
- 83. Electric Energy Association. <u>The Comparative Environmental Impact</u> in 1980 of Fossil Fuel Space Heating Systems Versus Electric Space <u>Heating, Executive Summary</u>. New York, New York: Gordian Associates, Inc., 1972.
- 84. Nicholas, F. "Electric Heat Conserves Energy." <u>Contractors</u>' <u>Electrical Equipment</u>, 24, No. 8 (1972): 8-12.
- 85. "All-Electric Residence Conserves Energy." <u>Electrical World</u>, 178, No. 3 (1972): 54-57.
- 86. "Pollution Level Cut with Electrical Heat Use." <u>Electrical World</u>, 177, No. 9 (1972): 48-51.
- 87. Kidd, I.C., Jr. "Of Time and Energy." <u>EEI Bulletin</u>, 40 (1972): 167-172.
- 88. Hubbert, M. K. "The Energy Resources of the Earth." <u>Scientific</u> <u>American</u>, 224, No. 3 (1971): 61-67.

- 89. Landsberg, H. H. <u>Resources in America's Future</u>. Baltimore: Johns Hopkins Press, 1963.
- 90. Smock, R. W. "Let's Face it There's a Fuel Crisis." <u>Electric</u> Light and Power, 50, No. 13 (1972): 27-31.
- 91. Sherman, J. T. "Uranium 1971." <u>Engineering and Mining Journal</u>, 173, No. 3 (1972): 67-71.
- 92. Benedict, M. "Electric Power from Nuclear Fission." <u>Technical</u> Review, 74 (October 1971): 37-42.
- 93. Benedict, M. "Electric Generating Prospects for Nuclear Power." <u>IEEE Spectrum</u>, 7, No. 7 (1970): 27-32.
- 94. "The Fast Breeder Reactor: Signs of a Critical Reaction." <u>Science</u>, 176, No. 4033 (1972): 391-397.
- 95. Bueche, A. M. "Electric Utility R & D Goals Through the Year 2000." Public Utilities Fortnightly, 89, No. 8 (1972): 40-46.
- 96. Behnke, W. B. "Status Report: U. S. LMFBR Program." <u>Combustion</u>, 43, No. 12 (1972): 24-27.
- 97. "Commonwealth Edison and TVA will Build and Operate LMFBR Demonstration Plant." <u>EEI Bulletin</u>, 40, No. 1 (1972): 11-17.
- 98. "The Who, What, Why, When, and Where of Fast Breeder Reactors," Combustion, 43, No. 12 (1972): 20-26.
- 99. "Nuclear Power Engineering." <u>Power Engineering</u>, 76, No. 7 (1972): 24-27.
- 100. Fortescue, P. "A Reactor Strategy: FBR's and HTGR's." <u>Power</u> <u>Engineering</u>, 75, No. 8 (1971): 45-49.
- 101. Fortescue, P. "Tomorrow's Plant: Gas Turbines, Nuclear Power, Dry Cooling." Power Engineering, 75, No. 8 (1971): 45-49.
- 102. Papamarcas, J. "Fossil Fuels." Power Engineering, 76, No. 5 (1972): 35-39.
- Office of Coal Research. <u>Annual Report 1972</u>. Washington, D.C.:
 U. S. Government Printing Office, 1972.
- 104. Atkins, R. S. "Scrubbing SO₂ and Particulates Demonstrated on Industrial Boiler." <u>Power Engineering</u>, 76, No. 5 (1972): 50-56.
- 105. "SO₂: More Questions than Answers." <u>Electrical World</u>, 176, No. 12 (1971): 50-56.

- 106. Baker, B. S. "Power for Tomorrow" What are Our Options?" <u>Power</u> <u>Engineering</u>, 74, No. 10 (1970): 30-34.
- 107. "Catching Sulfur Before it Goes up the Stack." <u>Business Week</u>, No. 2221 (1972): 72-73.
- 108. Matthews, C. W. "Coal Gasification for Electric Power." Proceedings of the American Power Conference, 34 (1972): 505-511.
- 109. Priddy, A. P. "Engineering Considerations of Combined Cycles." Proceedings of the American Power Conference, 34 (1972): 282-289.
- 110. Squires, A. M. "Clean Power from Dirty Fuels." <u>Scientific American</u>, 227, No. 4 (1972): 26-31.
- 111. "Ready to Turn Coal Into Gas." Business Week. No. 2225 (1972): 44-47.
- 112. "Commonwealth Edison May Seek Industry Money for Gassification R & D Project." Electrical Week, April 19, 1972.
- 113. "MHD Research Gets Backing of Industrial Group." <u>Electrical World</u>, 173, No. 2 (1970): 20-24.
- 114. Friedlander, G. D. "A Comeback for Ready Kilowatt." IEEE Spectrum, 9, No. 4 (1972): 44-47.
- 115. Jackson, W. D. "Critique of MHD Power Generation." <u>Power Engineer-</u> <u>ing</u>, 76, No. 10 (1972): 68-72.
- 116. "EEI Supports Research Project on MHD Energy Conversion." <u>EEI</u> <u>Bulletin</u>, 40, No. 3 (1972): 121-129.
- 117. Mathusa, P. D. "Can Urban Power Systems Use Fuel Cells?" <u>Electric</u> <u>Light and Power</u>, 50, No. 7 (1972): 57-61.
- 118. Bowen, R. G. "Geothermal: Earth's Primordial Energy." <u>Technology</u> <u>Review</u>, 74 (October 1971): 48-51.
- 119. Lessing, L. "Power from the Earth's Own Heat." Fortune, 79, No. 7 (1969): 138-142.
- 120. Horvath, J. C. "Geothermal Energy, Its Future and Economics." Electric Light and Power, 50, No. 8 (1972): 63-69.
- 121. "Turning Turbines with Geothermal Steam." <u>Power Engineering</u>, 76, No. 3 (1972): 36-39.

- 122. "Why Saudi Arabia Wants a U. S. Oil Deal." <u>Business Week</u>, No. 2249 (1972): 32-33.
- 123. "A Way to Clean the Dirtiest Fuel." <u>Business Week</u>, No. 2249 (1972): 72-75.
- 124. Balzhiser, R. E. "The Energy Horizon: Technology's Contribution." Proceedings of the American Power Conference, 34 (1972): 23-31.
- 125. Olds, E. E. "Fusion Power." <u>Power Engineering</u>, 74, No. 10 (1970): 37-41.
- 126. Mills, R. G. "The Promise of Controlled Fusion." <u>IEEE Spectrum</u>, 8, No. 11 (1971): 24-29.
- 127. "The Year 2000: Living with Growth." <u>Electric Light and Power</u>, 50, No. 17 (1972): 55-57.
- 128. Strother, J. A. "New Power Sources." <u>IEEE Spectrum</u>, 9, No. 5 (1972): 12-17.
- 129. Harleman, D. R. and Parsons, R. M. "Heat: The Ultimate Waste." <u>Technology Review</u>, 74 (December 1971): 44-49.
- Council on Environmental Quality. <u>Energy and the Environment -</u> <u>Electric Power</u>. Washington, D.C.: U. S. Government Printing Office, 1973.
- 131. Nasser, E. The Structure of the Electric Energy System, Part I -Generation. Department of Electrical Engineering, Engineering Research Institute, Iowa State University, Ames, Iowa, 1974.
- 132. <u>Distributive Systems, Electric Utility Engineering Reference Book.</u> East Pittsburgh, Pennsylvania: Westinghouse Electric Corporation, 1965.
- 133. Edison Electric Institute. <u>Statistical Year Book of the Electric</u> Utility Industry for 1973. New York, New York: Author, 1974.
- 134. <u>Energy: 1975</u>. The First Annual Report of the Iowa Energy Policy Council, DesMoines, Iowa, 1975.
- Lanford, H. W. <u>Technological Forecasting Methodologies</u>. Washington, D.C.: American Management Association, 1972.
- 136. <u>Rules and Regulations</u>. State of Iowa, Department of Environmental Quality, Air Quality Commission, Des Moines, Iowa, December 1973.
- 137. <u>Annual MARCA Report to the Federal Power Commission</u>. Mid-Continent Area Reliability Coordination Agreement (MARCA), Minneapolis, Minnesota, 1975.

- 138. Energy Facts for Iowa. State of Iowa, Iowa Geological Survey, Iowa City, Iowa, 1973.
- 139. Driebeek, N. J. <u>Applied Linear Programming</u>. Reading, Massachusetts: Addison-Wesley Publishing Co., 1969.
- 140. IBM Program Product. "Introduction to Mathematical Programming System-Extended (MPSX)." White Plains, New York: IBM Publications, 1972.
- 141. El-Tablawy, T. A. "Digital Optimization of Long-Range Power System Planning Using the Dynamic Programming Technique." Unpublished Ph.D. thesis, Iowa State University, Ames, Iowa, 1970.
- 142. North Central Power Study. Report of Phase I, Volume II. Committee of North Central Power Study, Billings, Montana, October 1971.
- 143. Weekly Energy Report, 3, No. 1 (Jan 1975): 4-8.
- 144. Hubbert, M. K. "The Energy Resources of the Earth." <u>Scientific</u> <u>American</u>, 224, No. 3 (1971): 61-70.
- 145. Landsberg, H. H. and Fischman, L. L. <u>Resources in America's Future</u>. Baltimore: Johns Hopkins Press, 1963.
- 146. <u>The 1970 National Power Survey</u>. Part I, Federal Power Commission. Washington, D.C.: U. S. Government Printing Office, 1971.
- 147. <u>U. S. Energy A Summary Review</u>. U. S. Department of the Interior, Washington, D.C.: U. S. Government Printing Office, 1972.
- 148. "Electric Industry Sets 1970 Records in Generation, Capacity, Sales, Revenues." <u>EEI Bulletin</u>, 39, No. 1 (1971): 4-11.
- 149. <u>48th Semi-Annual Electric Power Survey</u>. A report of the Electric Power Survey Committee of the Edison Electric Institute, New York, October 1970.
- 150. <u>Bibliography & Digest of U. S. Electric & Total Energy Forecasts</u> 1970-2050. <u>Edison Electric Institute</u>, Publication No. 69-23, New York, 1971.
- 151. <u>The Economy, Energy, & the Environment</u>. Joint Economic Committee, Congress of the U.S. By the Environmental Policy Division, Legislative Reference Service, Washington, D.C.: U. S. Government Printing Office, 1970.
- 152. <u>Environmental Effects of Producing Electric Power</u>. Hearings before the Joint Committee on Atomic Energy, Congress of the U. S., Washington, D.C.: U. S. Government Printing Office, 1969.

- 153. Conklin, E. R. <u>19th Annual Electrical Industry Forecast</u>. New York, New York: McGraw-Hill, Inc., 1968.
- 154. Olmstead, L. M. <u>21st Annual Electrical Industry Forecast</u>. New York, New York: McGraw-Hill, Inc., 1970.
- 155. Dole, H. M. "American Energy Needs & Resources." A Paper Presented at Stanford University, Palo Alto, California, January 12, 1971.
- 156. <u>49th Annual Report for Congress, 1969</u>. Federal Power Commission, Washington, D.C.: U. S. Government Printing Office, 1970.
- 157. "Fuels Management in an Environmental Age." <u>Environmental Science &</u> Technology, 5, No. 1 (1971): 30-36.
- 158. Rocks, L. and Runyon, R. P. <u>The Energy Crisis</u>. New York, New York: Crown Publishers, Inc., 1972.
- 159. Felix, F. "Annual Growth on Downward Trend." <u>Electrical World</u>, 174, No. 22 (July 1970): 22-26.
- 160. <u>Potential Nuclear Power Growth Patterns</u>. Division of Reactor Development & Technology, U. S. Atomic Energy Commission, Washington, D.C.: U. S. Government Printing Office, 1970.
- 161. Evans, R. K. and Strauss, S. D. "Energy Demands." <u>Power</u>, 112, No. 6 (1968): 51-53.
- 162. Kohn, J. P. "Energy for the Seventies." A Paper Presented at the Utility Executive Conference, Washington, D.C., January 14-15, 1971.
- 163. Wright, J. H. "Electric Power Generation & Environment." Westinghouse Engineer, 26, No. 5 (May 1970): 66-80.
- 164. Ross, P. N. and Hauser, L. G. "Some Future Dimensions of Electric Power Generation, Circa 1970-1990." <u>Westinghouse Engineer</u>, 27, No. 1 (January 1971): 2-7.
- 165. <u>1971 Statistical Year Book</u>. Statistical Office of the United Nations, New York: United Nations Publication, 1971.
- 166. <u>Statistical Abstract of the U. S., 1971</u>. U. S. Department of Commerce, Bureau of Census, Washington, D.C.: U. S. Government Printing Office, 1971.
- 167. Mayer, A. L. "It's a Beer Market for Babies, Too." Fortune, 89, No. 12 (December 1974): 134-137.
- 168. <u>Minerals Yearbook, 1972</u>. U. S. Department of the Interior, Bureau of Mines, Washington, D.C.: U. S. Government Printing Office, 1972.

- 169. <u>Statistical Year Book of the Electric Utility Industry for 1973</u>. Edison Electric Institute, New York, New York: EEI Publication, 1974.
- 170. <u>Steam-Electric Plant Construction Cost and Annual Production</u> <u>Expenses, 1972</u>. Federal Power Commission, Washington, D.C.: U. S. Government Printing Office, 1974.
- 171. Inglis, D. R. <u>Nuclear Energy: Its Physics and Its Social Challenge</u>. Reading, Massachusetts: Addison-Wesley Publishing Co., 1973.

X. ACKNOWLEDGMENTS

The author wishes to express his sincere appreciation to Dr. P. M. Anderson, for his encouragement and invaluable guidance during the preparation of this thesis.

The author also wishes to thank Dr. D. W. Bowen, for his understanding, encouragement, and suggestions.

A special thank you is extended to Dr. D. D. Robb, for his continuous encouragement. The author is also indebted to Dr. V. A. Sposito, for his assistance in developing the model. Many thanks are also owed to the Power Affiliates program for their financial help.

Thanks are also given to Judy, for her excellent typing.

Finally, the author's deepest appreciation goes to Dorothy, for her patience, understanding, and valuable editorial assistance.

XI. APPENDIX A: ANNUAL LOAD FACTOR

The load factor is the ratio of the average load over a given period of time to the peak load occurring in that period (132). Therefore, the system annual load factor (LF), as viewed from the terminals of all generating units, is:

$$LF = \frac{(Average Load, kW)}{(Peak Load, kW)} = \frac{(Ann. Energy Output, kWh)}{(Peak Load, kW)(8760)}$$

In 1973, annual electrical energy output, peak load, and energy sales data for total electric utility industry in the United States, according to Edison Electric Institute, were (133):

> Peak Load: 343,900 MW Electric Energy Output: $1,868.8 \times 10^6$ MWh Energy Sales = $1,703.203 \times 10^6$ MWh

Therefore, in 1973 the annual load factor for the USA was:

$$LF = \frac{1.868.8 \times 10^{\circ} \text{ MWh}}{(343,900 \text{ MW})(8760)} = 62\%$$

Figure A.1 shows that in 1968 the world average load factor was much lower than the United States' load factor, although several nations had better (higher) load factors (28). There is no direct correlation between GNP and load factor.

The difference between annual energy output and energy sales is transmission and distribution system losses and miscellaneous use, which amounted to 8.86 percent of the average system load in 1973. Thus, on an energy basis the aggregate U. S. electric power transmission system was

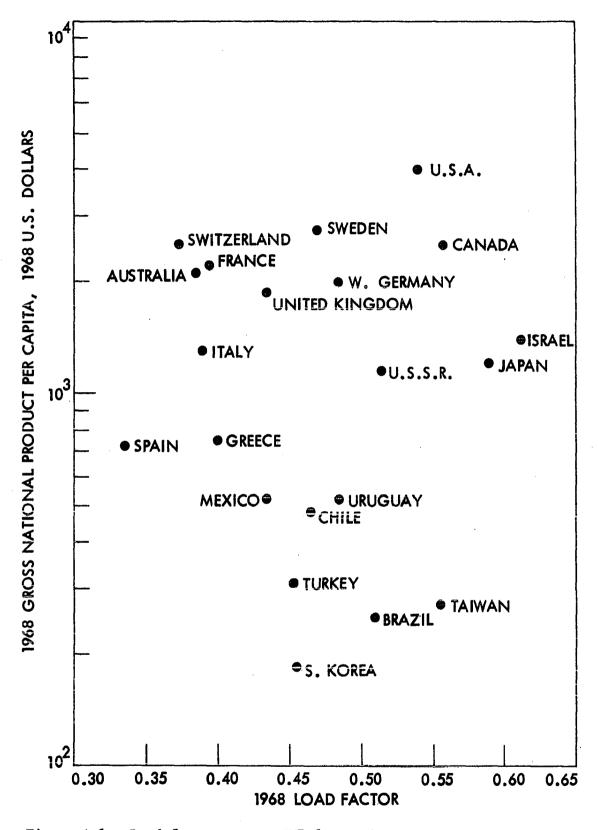


Figure A.1. Load factor versus GNP for various countries, in 1968

about 91 percent efficient.

The peak load loss (portion of the peak demand consumed in the transmission system) is not readily measured, but can be calculated from the energy loss factor and the system annual load factor with the following equations (132):

$$LS = (0.25)(LF) + (0.75)(LF)^2$$

where LS is loss factor in per unit, and LF is load factor in per unit. Therefore,

LS = (0.25)(0.62) + (0.75)(0.62)² = 0.443
Peak Loss =
$$\frac{\text{(Electric Energy Output, MWh)} - \text{(Energy Sales, MWh)}}{\text{(Loss Factor)(8760)}}$$

= $\frac{(1,868.8 \times 10^6 - 1,703.203 \times 10^6)}{(0.443)(8760)}$ = 42,672.16 MW

Hence, the peak load loss for the total electric utility industry in the United States was 12.4 percent in 1973. The load factor calculations above are based on viewing the system and load from the generator busses. However, the load factor as viewed from the customer terminals is:

$$(LF)_{customer} = \frac{(Energy Sales, MWh)}{(Peak Customer Load, MW)(8760)}$$

= $\frac{(Energy Sales, MWh)}{(Peak Load, MW)(1 - Peak Loss in p.u.)(8760)}$
= $\frac{(1,703.203 \times 10^6 MWh)}{(343,900 MW)(1 - 0.124)(8760)} = 64.53\%$

The ratio of load factor to load factor of customer bus is:

$$\frac{\text{LF}}{(\text{LF})_{\text{customer bus}}} \stackrel{=}{=} \frac{0.62}{0.6453} = 0.96$$

Therefore, it is found that, using 1973 data for the United States, (LF)_{customer bus} = (1.04)LF.

XII. APPENDIX B: THE EXPONENTIAL GROWTH

Fitting trends after transformation of data is a common practice in technical forecasting. An arithmetic straight line that will not fit the original data may fit, for example, the logarithms of the data as typified by the exponential trend,

$$y_t = ab^x$$
 (B.1)

This expression is sometimes called a growth equation, since it is often used to explain the phenomenon of growth through time. For example, the compound-interest formula is:

$$P_n = P_o (1 + i)^n$$
 (B.2)

where P_o is the initial capital, i is the rate of interest, and P_n is the capital value after n years. Now, if we set $P_n = y_t$, $P_o = a$, 1 + i = b, and n = x, then the equation is identical to the exponential trend equation (B.1).

A quantity exhibits exponential growth when it increases by a constant percentage of the whole in a constant time period (8). The process proceeds in exponential fashion until something limits the growth process. Shortage of food or resources, natural enemies, and perhaps other checks to growth cannot be ignored. In a realistic environment, no process can or will grow exponentially forever, although it may experience exponential growth for a limited period. Many processes have been properly characterized in terms of an exponential growth curve by forecasters considering bounded study periods. The assumption is that natural limitations to the growth process will not be strong or dominant during the study period.

A realistic model of growth would be that of fruit flies in a jar. Assume a fixed amount of air and food are injected daily. The fruit flies would multiply in number, and their growth would be exponential at first, until the air and food became limited resources. Then competition for the resources would leave some flies without the means for survival, and the population would level off, rather than fill the jar completely. Growth would cease rather abruptly, since the restraining forces cannot be avoided or altered.

Most growth processes are much more complicated than those discussed above. In particular, the restraining forces are usually numerous and interrelated, and are present even in the earliest stages of growth. As a result, growth processes are usually multistage, beginning often in exponential fashion, followed by growth at a diminishing rate, followed by ultimate stopping of growth. Let us consider an example of the growth of some generalized quantity, which is normalized to a value of 1.0 at time zero. Consider exponential growth at 2.0 percent per year, compounded annually, for an unbounded time period. Next, consider a modified exponential growth pattern for the same quantity, governed by the growth rates indicated in Table B.1.

Table B.1. Modified exponential growth rates

Time Period (Years)	Compound Growth (Percent)	Rate
0-30	10	
30-60	8	

Table B.1. Continued.

Time Period (Years)	Compound Growth Rate (Percent)	
 60-70	6	
70-80	4	
80-90	3	
90-100	2	
100-110	1	
110-160	0.5	
160-200	0.3	
200-300	0.1	
300-400	0.05	

Both growth curves are plotted in Figure B.1. Note that the modified exponential growth curve rises more rapidly at first, then "saturates", and continues to grow modestly. It passes through a phase of rapid exponential growth, and then later grows at a steadily diminishing rate until absolute growth becomes very moderate. This is typical of the growth of natural processes, and the modified exponential growth curve in Figure B.1 resembles the Gompertz and Pearl-Reed growth curves used by economists (66). On the other hand, the true exponential growth curve seems to grow modestly at first, but eventually reaches staggering proportions. Not only does the total amount grow exponentially, but the slope of the curve also grows exponentially. It is noteworthy that all true exponential growth curves have the same shape. Only the time scale changes as the compound growth rate is modified. Alternatively, emponential growth can be plotted in doubling periods instead of years. The

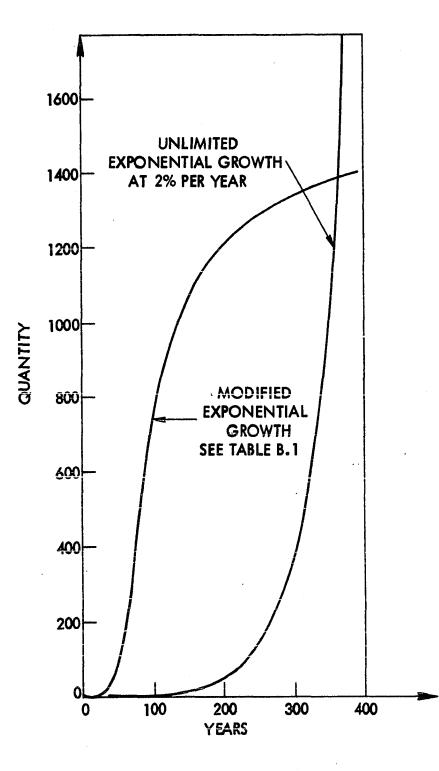


Figure B.1. Growth curves

length of the doubling period is directly related to the compound growth rate, and in the present case (2% growth), it is 35 years. Other doubling periods are noted in Table B.2 for comparison.

Annual	Growth Rate (%)	Doubling Period (Years)	
	1	69.4	
	2	35	
	5	14.2	
	7.2	10	
	10	7.3	

Table B.2. Doubling periods for various annual growth rates

No natural or man-made process can experience exponential growth indefinitely. Eventually some limitation, or several limitations, will present opposing forces which diminish the intensity of growth or even reverse it. Natural enemies, competition, resource and food limitations, and space limitations are examples of possible forces opposing exponential growth. Processes involving human decisions are not exceptions to this rule. Although human ingenuity can sometimes extend the period of exponential growth by weakening or removing the opposing forces, that same ingenuity can substitute alternative processes which may also limit the growth of the original process. XIII. APPENDIX C: THE IMPACT OF ELECTRIC CARS ON LOAD FACTOR

In the United States in 1973, the load factor for all power systems combined was approximately 62 percent. This figure takes into account a simultaneous peak demand of 343,900 MW and energy production of 1,866.8 x 10⁶ MWh (See Appendix A). The load factor is a measure of equipment utilization. Therefore, since electric power systems are capital intensive, electric power industry strive for high load factors. For this reason, off-peak energy utilization is advantageous. Since such utilization requires no additional capital investment in system facilities, it benefits both electric power companies and their customers. Load growth, on the other hand, is undesirable. It causes an increase in peak load, which necessitates new investment in production, transmission, and distribution facilities.

At present, the battery powered electric vehicles that are in service are far outnumbered by gasoline powered vehicles. Today the impact of these electric vehicles on electric power demand is relatively insignificant. This situation will probably not change until better high energy density batteries become feasible to use on a large scale (48). If, at some future time, electric cars do become popular, electric power systems will supply the energy they need. Since most cars would be in use during peak periods, their batteries could easily be energized during off-peak periods, in which case no new power plants or transmission facilities would need to be built. Although the future popularity of electric cars cannot be predicted precisely, their possible impact on the system load factor can be estimated by making certain assumptions.

To present an extreme example, it will be assumed that electric cars become extremely popular in the early 1980's. There are presently 90 million cars on the road. It is expected that 180 million cars will be by the year 2000 (48). Assuming range and performance similar to those of contemporary automobiles, a 1,430 kilogram electric car with an energy consumption rate of 0.40 kWh per kilometer, including energy needed to overcome vehicle inertia and road friction, to charge and discharge the battery, energy lost in the transmission line, and that needed for heating and air conditioning (48). Approximately 1.16 x 10^{12} kWh of energy would be consumed yearly by 180 million such cars, assuming an average driving distance of 16,100 kilometers (10,000 miles).

It is quite possible that electric cars alone will supply the "second car" market by the year 2000. At that time, there very possibly may be 90 million cars (half of total cars sold) on the second car market, assuming there will be more than two cars per family of four and a U. S. population of 279 million. If those 90 million cars were electric cars, they would use 0.58×10^{12} kWh of electrical energy per year, which would significantly increase the load factor for combined power systems.

XIV. APPENDIX D: A COMPUTER PROGRAM TO CALCULATE THE AREA UNDER A GIVEN CONSUMPTION CURVE

```
C . . . . . . . . . . . . . . .
                     ................
C
C A FREGRAM TE CALCULATE THE AREA UNDER A GIVEN
              CONSUMPTION CURVE
С
С
C..........
              ....
                               ........................
С
С
//C269TG JCE
                I4375,GONEN
//STEP1 EXEC WATFIV
//GC.SYSIN DD *
$J08
          'GONEN', TIME = 5, PA GE S=10
      DIMENSION Y(30)
C N IS THE NUMBER OF GIVEN CONSUMPTION VALUES MINUS ONE.
C DELTAX IS THE NUMBER OF THE YEARS BETWEEN INTERVALS.
      READ .N
      READ , DEL TAX
      NN=N+1
      READ . (Y(I) .I =1 .NN)
      PR INT, NN, DEL TAX, (Y(I), I=1, NN)
      SUM=Y(1)+Y(NN)
      NM=N-2
      DC 1 I=2.NM.2
       SLM=SUM+4.*Y(I)+2.*Y(I+1)
       IF((I+1).EQ.(N-1)) GO TO 20
    I CONTINUE
   20 SUM= SUM+ 4. *Y(N)
    2 AREA=DELTAX #SUM/3.
      PRINT, AREA
       STOP
       END
SENTRY
CATA
       N
       DELTAX.
Υ.
/*
```

XV. APPENDIX E: A COMPUTER PROGRAM FOR DEMAND FORECASTING SUBMODEL

С DEMAND FORECASTING SUBMODEL. C С С. С С //C269TG JOB I4375,GONEN DIMENSION RLXD(50),RLXC(50),Y(50) C RLXD=READ PAST DEMAND VALUES IN MW. C RLXC=PREDICTED FUTURE DEMAND VALUES IN MW. C NE=NUMBER OF YEARS IN THE PAST UP TO THE PRESENT C NF=NUMBER OF YEARS FROM THE PRESENT TO THE FUTURE THAT С WILL BE PREDICTED. READ , NP , NF READ, (RLXD(I), I=1,NP) SXIYI=0. SXI SQ=C. SXI=0. SYI=0. SYISQ=0. CC 1 I=1,NP XI = I - 1Y(I) = ALOG(RLXD(I))SXIYI=SXIYI+XI*Y(I) SXI=SXI+XISYI=SYI+Y(I) SXI SQ=SXI SQ+XI **2 SYISQ=SYISQ+Y(I)**2 1 CENTINUE A=(SXIYI-(SXI*SYI)/NP)/(SXISQ-(SXI**2)/NP) B=SY I/NP-A*SXI/NP C A=ALOG(R);R=1+RATE OF GRCWTH R=EXP(A) C B=ALCG(RLXC(1)) RLXC(1)=EXP(B)C RG=RATE OF GROWTH

FG=R-1. PRINT, "RATE OF GROWTH=",RG NN=NF+NF DC 2 I=2.NN $\times I = I - 1$ DY=A*XI+B RLXC(I)=EXP(DY) 2 CENTINUE RLXC. PRINT. *RLXD CO 4 I=1,NP PRINT,RLXD(I),RLXC(I) 4 CONTINUE DC 3 I=1.NF IP=I+NP * RLXC(IP) PRINT,* 3 CONTINUE STOP END SENTRY CATA NF NF RLXD. /*

XVI. APPENDIX F: COMPUTER OUTPUTS OF THE FAM MODEL FOR THE IOWA POOL APPLICATION

The following pages show a summary of the input data and the optimum solution of the FAM model for the Iowa Pool application. (See Appendix H for the interpretation of the output.)

SOLUTION (OPTIMAL)

TINE = 1018 MINS. ITERATION NUMBER = 1063

+0+ NAI4E+++	•••ACTIVITY	DEFINED AS
FUNCT IONAL RESTRAINTS BOUND3++++	4953459326.97	С 8 8 но 1

١î) MPSX RELEASE 1 MOD LEVEL EXECUTOR.

SECTION 1 - ROWS

7.67000 6.30000 7.49000 9.78000 9.78000 12.300000 12.30000 12.30000 24.38000 47.72000-3.95000 10.72000 33.10000 53.85000 61.94000 . DUAL ACTIVITY -0006+-69 78+68000-2.44000 6.17000 13.10000 35.64000 56.57000 1.00000 .37000 .59000 NDNE 22527000°0000 24432000°0000 26591000°0000 265710000°0000 47533683•5997 47781456•7996 48037629•5996 1681919-99998 1681919-999999 1681919-9999999 1681919-999999 1681920-00000 1681920-00000 .. UPPER LIMIT. 30798000,0000 33019000,0000 35459000,0000 469629999 9995 38068331, 3999 \$3006575° 0995 44346542a5995 47637465a 7995 1001945.9999 +9656553+0996 595326+50000 595326e 50000 \$95326+50000 595326+50000 315360+00000 315360.00000 315360• 00000 565670•00000 38074999.9998 40815999 9998 43832999°99999 44685209+1997 8325297.6996 315360+00000 315360.00000 315360.00000 315360+00000 565670+00000 565670+00000 565670+00000 NDNE 22527000+0000 24532000+000 25591000+000 25591000+000 33559000+000 33559000+000 38074999+9998 40815999+9998 **BOLDVER LIMIT** 13832999+9999 16962999, 9995 SLACK ACTIVITY 16620735•4997 14005662• 3996 12749659•7998 4953459326.97-10000• 20000 10000• 20000 18325374.4999 20988161. 8995 20324465+6995 19167422.0997 19063716.5995 0503922+2997 7981320•69997 7714360.29932 75367. 10000 72715-50000 P1367. 50000 69640.00000 62839.00000 10000+20000 0000-20001 ...ACT IV ITY ... 24432000,0000 26591000,0000 2871000,0000 1681919999998 168191999999999 168191999999999 16819199999999 168192090000 1681920900000 32875794.4000 35287969.7998 315360,00000 315360,00000 315360,00000 35459000,0000 36074999,9998 22018413+2000 30912546.1000 523759.00000 152521.00000 31536.0.0000 4953459326.97 22527000+0000 30798000.0000 33019000-0000 10815999,9998 43832995, 9999 \$666*661529691 974 2956 9000 24022076 99000 2551 71'87. 1000 28573749.2000 37816375+ 3908 00820125.2999 1942192.7998 519459.39999 52261 i. 00000 525686=50000 315360.00000 555669.80000 555669+80000 555669+80000 555669 79999 681919.99998 AT ...ROKu. R 10 R 114 R 115 R 110 811 R 12 R 13 818 858 840 843 448 R & 2 Rel I å ບຂຶ NUMBER ŝ 10 m 00 0

SECTION 2 - COLUMNS

NUMBER	• COLUNN.	AT	ACTIVITY	INPUT COST	OFLOWER LIMITS	UPPER LIMIT,	.REDUCED COST.
46	F 175	LL	366 938. 40000	7.69000	366938+40000	566935.40000	e02000
47	F275	LL	152521.00000	8. 51000	1 5252 1. 00000	377959.00000	.84000
48	F375	LL	45-81 3. 30000	44.11000	45813.30000	314966.80000	36. 44 000
49	F575	LL	313697.40000	7.84000	313697.40000	503945.30000	.17000
50	F675	LL	241972.40000	8.51000	241972,40000	251972.60000	.84000
51	F275	EQ	440952-10000	37.80000	440952-10000	440952-10000	30 • 1 3000
52	F975	LL	72126.00000	37. 80000	72126.00000	440952+10000	30-13000
53	F1075	LL	82591.40000	50.40000	82591.40000	94489.70000	42. 73000
54	F1175	LL	•	50. 40000		94489.70000	42.73000
55	F1275	ĒL	•	50.40000	•	94489.70000	42.73000
56	F1375	LL	•	50. 40000	•	94489.70000	42.73000
57	F1475	LL	•	50. 40000	•	94489.70000	42.73000
58	F1575	LL	•	50.40000	•	94489.70000	42.73000
59	F1675	LL	•	50. 40000	•	94489.70000	42.73000
60	F1775	LL	•	50.40000	•	94489.70000	42.73000
61	P1975	UL.	2204 760.60000	1.93000	•	2204760+60000	5.74000-
62	P2275	LL	65444.20000	40.00000	65444.20000	3149658.00000	32.33000
63	F176	LL	370090.00000	8.23000	370090.00000	566938.40000	1.93000
64	F276	LL	152521.00000	9.10000	152521.00000	377959.00000	2.80000
65	F376	LL	46100.00000	47.20000	46100.00000	314966.80000	40.90000
66	F576	LL	313697.40000	8.39000	313697.40000	503945e30000	2+09000
67	F676	LL	241972.40000	9.10000	241972.40000	251972.60000	2+60000
A 68	F776	UL	661428 20000	6. 30000	238193.80000	661428.20000	. •
69	F876	EO	440952+10000	40. 44000	440952.10000	440952.10000	34-14000
70	F976	LL	8681.0.00000	40.44000	86810.00000	440952.10000	34.14000
71	F1076	EQ	94489. 70000	53.93000	94489.70000	94489.70000	47.63000
72	F1176	LL	1868+60000	53.93000	1868.60000	94489.70000	47.63000
73	F1276	LL	•	53. 93000	•	94489•70000	47.63000
74	F1376	LL	¢.	53.93000	•	94489.70000	47.63000
75	F 1476	LL	•	53,93000	•	94489.70000	47.63000
76	F1576	LL	•	53.93000	•	94489.70000	47.63000
77	F1676	LL	•	53,93000	•	94489.70000	47.63000
78	F1776	LL	•	53. 93000	•	94489+70000	47+63000
79	P1976	UL	2204760+60000	2.02000	• *	2204760.60000	4.28000-
80	P2276	LL	69316+60000	42+80000	69316+60000	3149658.00000	36.50000
81	52376	EQ	356961020000	50000-	356961,20000	356961.20000	● 80000
82	F177	LL	371238+00000	8.81000	371238.00000	566938.40000	1.32000
83	F277	LL	152521e 00000	9.74000	152521.00000	377959.00000	2.25000
84	F 37 7	LL	46895090000	50.50 0 00	46895,90000	314966.80000	43.01000
85	F577	LL	313697040000	8.98000	313697.40000	503945.30000	1.49000
86	F677	LL	241972040000	9074000	241972=40000	251972,60000	2.25000
87	F777	UL	661 42 8o 2000 0	6.74000	241225.00000	661428.20000	•75000-
88	F877	EQ	440952010000	43.27000	440952+10000	440952.10000	35.78000
89	F977	LL	98658a00000	43.27000	91668+00000	440952.10000	35.78000
90	F1077	EQ	944890 70000	57. 70000	94489.70000	94489.70000	50-21000
91	F1177	LL	3819a70000	57.70000	3819.70000	94489.70000	50.21000
92	F 1277	LL	0	57.70000	•	94489.70000	50.21000
93	F1377	LL	4	57. 70000	•	94489.70000	50.21000
94	F1477	LL	đ	57.70000	•	94489.70000	50.21000

2.07000 4.04000 40.71000	440952-10000	253775e00000 440952e10000	53.0 1000	561428.20000 440952.10000	a c	F880	144
*•0	001120010000	253775.00000	8.24000	661428e 20000	۶	100	143
2.0	AA1 AVA- V0000					ガション	
	251972.60000	3 4 5 6 7 3 - 4 6 7 0 0	11-93000	241972.40000	Ļ	F680	142
•	1763808.50000	672217.70000	9.85000	1439947.60000	5 8	F480	141
49-57000	314966.80000	48119-30000	61.87000	48-11 9e 30000	۲	F 380	140
•	377959,00000	1 52521.00000	11.93000	315360.00000	88 8	F280	139
2.80000	00009-156629	629931.60000	6.20000-	629931-60000	A D	52479	138
43.43000	3149658.00000	75319.90000	52.43000	75319.90000	۴	P2279	137
2.80000	157482.90000	147844.00000	6.20000	157482.90000	۶	P2079	136
6+66000-	2204760.60000	•	2.34000	22 04 76 04 60 000	۶	P1579	135
57.06000	94489.70000	•	66, 04000	•	۶	F1779	134
57.06000	94489.70000	٠	66+04000	•	F	F 1679	133
57.06000	94489.70000	•	66.06000	•	۶	F 1579	1 32
57.06000	94489.70000	•	66+ 00000	•	۶	F1479	131
57. 06000	94489.70000	•	66.06000	•	۶	F1379	130
57.06000	94 489 • 7000 J	•	66.06000	•	۴	F1279	129
57.06000	94489-70000	6734.50000	66.00000	6734.50000	F	F1179	128
57.06000	94 4 89, 70000	94489.70000	66.00000	94 489, 70000	EO	F1079	127
40-55000	40952 · 10000	100654.00000	49.53000	106654.00000	۶	F979	126
40.55000	440952.10000	+40952+10000	49.55000	++095.2+100/JO	ΠQ	F879	125
1.28000	661428.20000	2510000 00000	7. 72000	5151 42 8e 200 DO	۶	F779	124
2.74000	251972-60000	241972.40000	11.15000	241972.40000	F	F679	123
•	1763808.50000	6638890 00000	8.41000	1439947460000	88 88	F479	122
48+82000	314966.80000	47754440000	57. 82000	17761.40000	٢	F379	121
2.15000	377959.00000	152521,00000	11.15000	152521.00000	٢	F279	120
40.22000	3149658.00000	71888.10000	49a 00000	71883.10000	٢	P2278	1 19
2+ 58000-	314965.90000	265196.50000	6+ 20000	3 4965.90000	۶	P2078	118
6.55000-	2204750.60000	9	20252000	2204 764. 60000	۶	B161d	117
52.96000	94 489 . 70000	0	61074000	•	F	F1778	1 16
52+96000	94489.70000	0	61a74000	•	F	F1678	115
52.96000	94489+70000	¢	51e 74000	•	F	F1578	114
52.96000	94489.70000	•	61.74000	•	۴	F1478	113
52.96000	94489.70000	0	61e 74000	•	۶	F1378	112
52.96000	94489.70000	G	61 o 74000	•	F	F 1278	111
52.96000	94 489. 70000	4684.00000	61. 74000	4584.00000	F	F1178	110
52.96000	94489470000	94489°20000	61.74000	94 48% 7000 0	EO	F 1078	601
37. 52000	440952.10000	94957.00000	460 30000	94.957.00000	F	F978	108
37.52000	440952.10000	440952+10000	46e 30000	440952.10000	m D	F878	107
1.57000-	661428+20000	248129.70000	7.21000	661 420e 2000 0	۶	F778	1 6
1.64.000	251972.60000	241972.40000	108 42000	241972.40000	F	F678	201
•B2000	503945.30000	00000+700EtE	00000 e6	313-597. 40000	۶	F578	104
45+26000	314966.80000	47118= 50000	54.04000	47110.50000	F	F378	103
1.64.000	377959.00000	192521+00000	10-42000	152523.00000	٢	F278	102
• 65000	566938.40000	373165.50000	9-43000	373165. 50000	F	F178	101
00066•1	178480+60000	178480-60000	5+ 50000-	178480.60000	20	\$2377	100
. 38-30000	3149658.00000	20639.90000	45.79000	101230- 90000	F	P2277	99
5.37000-	2204760+60000	•	2.12000	2204 760. 60000	۶	P1977	93
50-21000	94489.70000	•	57. 70000	•	٢	F1777	97
50-21000	94489.70000	•	57.70000	•	F	F1677	96
50-21000	94489.70000	•	57. 70000	•	۶	F1577	95
			•• IMPUT COST ••		AT	+ CUL URNe	NUNBER
-REDUCED COST.			- THOUT CAST	· APPTUTTU,	•		

.

!

MBER	•CCLUPA.	A 7	ACTIVITY	INPUT CCST	LOVER LINET.	• • UPPER LIMIT	REDICED COST.
		ł					
140	F10 20	0	00002 -6-94 46	70° € 5000	00001 -58445	00004 008 + 40000	140290
147	F11 CO	۲	10 41 2+ 20 00 0	70.65000	10412.20000	94 4 69 × 70000	14.55000
146	F12E0	5	•	70.65000	•	94429.70000	14.55000
149	F1360	5	•	70.66000	•	94489.70000	14.59000
150	F14 E0	3	•	70.65000	۰	54469.70000	14 • 59000
111	F1260	5	•	70.69000	•	94469+70000	14.59000
152	F1620	٦	•	70. 65000	0	54 4 69° 70000	14.59000
201	F1780	2	•	70.69000	•	94469=7000C	14.59000
401	P1560	Ŀ	2204760.60000	2.4000	•	2204760.60000	53 64000-
	F2260	5 9	676537 .400 02	56.1000	77296.70000	3149658°00000	•
156	524 EC	8	314965. E000C	6+ 20000-	314965.800()0	314 965 *80000	49.90000
151	52580	32	314965,80000	6 • 6 () 000-	314965. 80000	314965.80000	49.50000
158	F 281	3 B	315360. 00000	12.77000	152521-00000	377959+00000	•
597	F381	5	51003.00000	64. 20000	51003.00000	314966.80000	6e18000
160	6481	85	1439947.60000	10.55000	678539.00010	1763606ª 5000 C	•
161	F681	5	241572.40000	12.77000	241972-40000	251972.60000	2.022000
1 C 2	(F781	3	661 42 Be20000	8 8 4000	246998.00000	661426.20000	51 .1 8000-
163	561	63	440552-10000	56+ 73000	440952+10000	440952 . 10000	3.29000-
164	F581	5	440.952. 10000	56. 7 2000	110764.00000	440952.10000	3429000-
165	FICEL	5	94 485° 70000	75.64000	94489 = 70000	94489 • 70000	15.62000
166	FILL	ہ۔ ر	14645. 6000 G	75. 64000	14089-00000	94489+70000	15.62000
167	F1261	Ļ	•	75.64000	•	54489.70000	15.62000
168	F1361	5	•	75.64000	•	94489.70000	15-62000
169	F1481	۲ د ر	•	75.64000	•	54489.70000	15.62000
170	F1563	רר	•	75 .64000	•	94489.70000	15.62000
171	F1681	Ļ	•	75. 64000	•	94469.70000	15.62000
1 72	F1761	1	•	75.64000	•	94489, 70000	15.62000
173	P1981	۲ د	2204760.6000	2.55040	•	2204760.60000	57.44000-
174	F2261	ŝ	645528.2003	60.02000	78535.60000	3149658,00000	•
175	SZEEL	11 0	157462. 90000	6+ 60000 -	157482.90000	157482 .90000	53.42000
176	F282	SB	J15360.00000	13.6600	152521-00000	377559+00000	
177	F382	Ļ	5742 5. 00000	70.64000	57025.00000	314966.60000	6.61000
178	F482	د ی ل	1439547.6000	11. 28000	701 985. 00000	1 763 808 50000	•
179	FGEZ	3	241.972.40000	13+66000	241572-40000	251572.60000	2.36000
100	F782	Ļ	661428• 20000	9. 45000	301222.00000	661428 20000	54.78000-
191	F882	503	440952.10000	60° 70000	440952-10000	440552.10000	3.53000-
182	FSE2	5	44() 552. 10000	60 • 70000	293293•60000	440552.10000	3853000-
183	F10.02	ŝ	50 489+ 7000	80° 93000	54489+70000	94 489 70000	16.70000
164	F1162	Ľ	10994.6000	80.93000	18994.60000	94409+70000	16+70000
165	F1262	5	•	80° 63000	•	94 4 89 • 7 00 C 0	16+70000
166	F13 22	2	•	000000	•	54465° 70000	16.70000
167	F1462	Ļ	•	80+93000	•	94489.70000	16.70000
188	F1562	2	•	80° 53000	•	94 489° 70000	16.70000
165	F1662	Ľ	•	80*53000	•	94469.70000	16.7000
190	F1762	2	•	80° 93000	•	94 489 • 70000	16.70000
161	F1962	3	22:04 760 60000	3.05000	•	2264760+60000	61.18000-
192	P 2 2 2 2	50	968 11 7• 7000 1	64,23000	60124 - 40000	3149658.00000	•
153	F283	88	3115360+00000	14.62000	152521•00000	377959.00000	•
4 5 %	1974	Ľ	57601.00000	75.73000	57841 .00000	314566.E000C	7. 61000
195	りしくし	9	1439547•60000	12.0000	723260•00000	1 763 808 50000	•
156	FCCU	Ľ	243 972.40000	14.62000	241972.40()00	251 572. 60000	2.54000

1 . 1

256

•	3149658,00000	• 27211 •• 50000	78e 68000	2354 158• 2997 1	ŝ	P2285	247
		1 234245 20000			; p		
20.47000	94459 70000		99.15000		: -	F1785	
20.47000	94489.70000	•	99.15000	•	F	F1685	243
20.47000	94489.70000	•	99.15000	•	٢	F1585	242
20.47000	94489.70000	•	99.15000	•	۶	F1425	241
20.47000	94 4 89 ₈ 7000 0	•	99.15000	ė	F	F1385	240
20.47000	94 489 . 70000	•	99-15000	•	۶	F1285	239
20.47000	94 489 . 70000	30176.90000	99.15000	30176-90000	۶	F1185	238
20.47000	94489.70000	94489.70000	99.15000	94489=70000	m D	F1085	237
-0005E .+	440952+10000	143009.00000	74.34000	440952+10000	۶	F 585	236
-000se	440952+10000	40952.10000	74.35000	440952.10000	E O	F885	235
67.10000-	661428a20000	347888.70000	11.53000	661428-20000	۶	F785	234
2.90000	251972.60000	241972.40000	16.73000	241972.40000	۶	F685	233
	1763808.50000	741536+40000	13.83000	1439947.60000	85	F485	232
8.10000	314956.80000	61232+70000	86 . 78000	51232, 70000	۶	F385	231
•	377959.00000	152521.00000	16.74000	315360.00000	8 S	F285	230
4.04000	3149658.00000	201555.00000	73+53000	201555+ 00000	۶	P2284	229
-00065 "65	146984,00000	125777+00000	10.10000	146984.00000	۶	P2184	228
66 • 1 3000-	2204760.60000	٠	3. 34000	2204 768. 60000	۶	P1984	227
65, 79000-	629931.60000	586742470000	3.70000	6,29931.60000	۶	N 1884	226
23.17000	94489.70000	•	92.65000	•	F	F1784	225
23.17000	94489.70000	•	92.66000	•	۶	F 1684	224
23.17000	94 4 89. 7 0000	•	92+66000	•	Ļ	F1584	523
23 17000	94489.70000	•	92. 66000	•	۶	F1484	222
23.17000	94489,70000	•	92+66000	•	۶	F1384	221
23 . 1 7000	94489.70000	•	92. 60000	•	F	F1284	220
23.17000	94489.70000	26041.00000	92.60000	26041.00000	٢	F1184	219
23.17000	94439.70000	94489,70030	92.60000	94489.70000	Ē	F1084 .	218
	440952.10000	122858.00000	69.49000	334312.80010	8	FSEA	217
	440952+10000	440952+10000	69.49000	44095.2. 10000	Ē	F 88 4	A 216
53.66000-	661.428.2000u	341232470000	10.83000	661428• 20000	۶	F784	215
2.72000	251972-60000	241972.400()0	15+60000	241972.40000	۴	F684	214
	1763808.50000	734678s 90000	12.92000	1439947.60001	BS	F484	213
11-61000	314 966 4 8000	58477.00000	81 + 10000	58477.00000	F	F 384	212
	377959.00000	15252 le 00000	15.64000	315360.00000	2 8	F284	211
21.00000	3149658+00000	8524 7400000	68.72000	8524 7. 00000	ĥ	P2283	210
37.62000	293968.10000	241133+00000	10+10000	293963+10000	۶	P2183	209
44.52000	2204760.60000	•	30000	2204760+60000	۶	P1983	208
38. 88000	94489.70000	8	86+60000	•	۶	F 1783	207
38 - 88000	94 489 4 70000	e	85. 60000	•	۶	F1683	206
38.88000	94 489 . 7000 0	•	860 600 00	•	۶	F 1583	205
38.88000	94 489 870000	•	86.60000	•	۶	F1483	204
38.88000	94489470000	•	86,60000	•	۶	F1383	203
38,88000	94489,70000	e	86.60000	•	۴	F1203	202
38.88000	944,89470000	2081 2. 00000	86-60000	20 51 20 00000	F	F1183	201
38.88000	94 489 . 70000	94489.70000	86= 6000 B	94 489. 70000	ĒQ	F 1083	200
17.23000	440952+10000	1 17852.00000	64,05000	1 17 35 2. 00000	F	F983	661
17.23000	440952.10000	440952.10000	64. 95000	440952. 10000	Ē	F883	198
37. 60000	661428.20000	336719-90000	10-12000	661420.20000	۶	F783	197
1							
•REDUCED COST.	UPPER LINIT.	++LOWER LIMIT.	A INPUT COSTAN	•• «ACTEVITY» ••	AT	· COLUMN.	NUMBER

NUMBER	. COLUMN.	AT	ACT IV ITY	. INPUT. COST.	LOWER LIMIT.	UPPER LIMIT.	.REDUCED COST.
NUMBER	• CULUMMA	~1					
248	F2175	LL	14641.00000	26.53000	14641.00000	126616.30000	18.86000
249	F2275	LL	17890.70000	26. 53000	17890+70000	126616-30000	18.86000
250	F2375	LL	16616.30000	26.53090	16616.30000	131655.70000	18.86000
251	F2475	UL	1303958.40000	6.04000	3 8555 3. 20000	1303958.40000	1.63000-
252	F2575	LL	25681.00000	25.20000	2568 1. 00000	37795.90000	17.53000
253	F2675	LL	14649.20000	25+20000	14649+20000	15746.30000	17.53000
254	F2775	LL	13372+80000	25.20000	13372.80000	15748.30000	17.53000
255	P2975	UL	125986.30000	5.50000	•	125986.30000	2.17000-
256	P21075	UL	6299-30000	50 50000	•	6299+30000	2.17000-
257	P21175	LL	25006+40000	50+40000	25006.40000	944897.40000	42.73000
258	\$21275	EQ	31496+60000	60 20000-	31496.60000	31496.60000	1+47000
259	F2176	LL	15423.00000	28.39000	15423.00000	126616.30000	22.09000
260	F2276	LL	16452.30000	28.39000	16452.30000	126616.30000	- 22+09000
261	F2376	LL	17263.10000	28. 39000	17263.10000	131655.70000	22.09000
262	F2476	LL	393236+50000	6+47000	393236.50000	1303958.40000	.17000
263	F2576	LL	27331+10000	26. 96000	27331.10000	37795.90000	20.66000
264	F 2676	LL	14649.20000	26 ₀ 96000	` 14649e 20000	15748.30000	20.66000
265	F 2776	LL	9639.90000	26.96000	9689+90000	15748.30000	20.66000
266	F2876	ØS	515888.40013	6.30000	•	917180.40000	•
267	P2976	UL	125936+ 30000	5.88000	•	125986.30000	•42000-
268	P21076	UL	(\$299+30000	5. 88000	•	6299.30000	•42000-
269	P21176	ււ	26536e80000	53,93000	26536.80000	944897.40000	47.63000
270	521376	EQ	50394+ 50000	6.60000**	50394.50000	50394.50000	• 30000-
271	F2177	LL	1679202000	30.37000	16742.20000	126616.30000	22.88000
272	F2277	LL	15862.00000	30.37000	16862.00000	126616.30000	22.88000
273	F2377	LL	1.3281+10000	30. 37000	18281.10000	131655.70000	22+8800C
274	F2477	UL	1303958#40000	6.92000	586732.30000	1303956.40000	• 5700/m
275	F2577	LL	27936e 20000	28e 85000	27938.20000	37795.90000	21.36000
276	F2677	LL	14925.20000	28.85000	14925.20000	15748, 30000	21.36000
277	F2777	ււ	9879.00000	28.85000	987 Je00000	15748.30000	21. 36000
278	F2877	UL.	917180+40000	6.74000	•	917180.40000	•75000-
279	P21077	ųL	6299+30000	6.29000	•	6299 . 30000	1.20000-
280	P21177	LŁ	2595 3 . 50000	57. 70000	26953.50000	944897=40000	50.21000
281	521477	EQ	62993+20000	6.90000	6299 3 • 200 00	62 993 •20000	•59000
282	F2178	LL	1 5943. 00300	32.50000	15943.00000	126616+30000	23.72000
283	F2278	LL	15925.50000	32.50000	16925.50000	126616.30000	23.72000
284	F2378	LL	19335.60000	32.50000	19385.60000	131655.70000	23.72000
285	F2478	UL	1303958.40000	7.01000	591113.70000	1303958+40000	1.37000-
266	F2578	LL	28520.00000	30. 74000	28520.00000	37795+90000	21.96000
287	F2678	LL	15026-30000	30.74000	15026-30000	15748.30000	21.96000
288	F2778	LL	10136+40000	30.74000	10136-40000	15748.30000	21.96000
289	F2878	UL	917130.40000	7.21000	•	917180.40000	1.57000-
290	P21078	UL	6299.30000	6.73000	•	6299.30000	2.05000+
291	P21178	LL	55256+10000	61.74000	56256-10000	944897.40000	52.96000
292	F2179	LL	17452 50000	34. 77000	17462-50000	126616.30000	25.77000
293	F2279	LL	16925.50000	34.77000	16925.50000	126616.30000	25.77000
294	F2379	LL	21 301 • 90 000	34.77000	21301-90000	131655.70000	25.77000
295 296	F2479	UL.	1303958.40000	7. 92000 33. 80000	597222080000	1303958.40000	1.08000-
	F2579	LL	28563.00000	32.89000	28563.00000	37795.90000	23.89000
297	F2679		15026.30000	32.89000	15026.30000	15748-30000	23.89000
298	F2779	LL	11425.00000	32.89000	11425.00000	15748.30000	23.89000

EXECUTOR.
109X
RELEASE
B MOD
LEVER S

14583.90000
15526+30000
3004 8+ 50000
678345+00000
29480-60000
20063+00000
19003-00000
64853.70000
٠
•
15173.00000
15526.30000
29678-30000
671832.00000
29216.90000
19865-10000
18632-50000
64256+00000
•
•
15612-00000
15526.30000
2911 1.00000
632338.00000
28887.70000
00003-00001
18532.00000
63050-10000
• '
11985-30000
15526.30000
28289.00000
612258-30000
21996.70000
17001.00000
17692.80000
59584 . 00000
•
•
11638.00000
1502 6+ 30000
29223.00000
000000000000000000000000000000000000000
2144 5. 00000
16926.00000
1764 2. 50000
56863.70000
•
LOWER LINIT.

.

			•				
NUMBER	. COLUNN.	AY	•••ACTIVITY•••	INPUT COST	LOWER LIMIT.	UPPER LINIT.	•REDUCED COST.
401	F 32376	LL	9865.00000	27.58000	985 5, 00000	409455.50000	21.28000
402	F32476	LL	22645.30000	25.08000	22645.30000	163782.20000	18.78000
403	F3577	ĒL	21496.60000	18.72000	21496.60000	31 496. 60000	11.23000
4 04	F3677	LL	21496.60000	18.72000	21496.60000	31496.60000	11.23000
405	F3777	LL	32993-10000	19.20000	32993.10000	62993 . 10000	11.71000
406	F3877	LL.	32993.10000	19.52000	32993.10000	62993.10000	12.03000
407	F3977	LL	71491. 10000	17.08000	71891+10000	81891.10000	9.59000
408	F31077	LL	14865.00000	41.40000	14865.00000	62993.10000	33.91000
409	F31177	LL	16023.80000	41.40000	16023.80000	56693.80000	33-91000
410	F31477	LL	98564 . 50000	33.12000	98564.50000	151183.60000	25+63000
411	F 31 577	LL	259061.00000	13.46000	259051.00000	359061.00000	5.97000
412	F31677	UL	425999. 50000	7. 13000	396853,00000	925999.50000	•36C^D-
4 1 3	F31777	UL	2078774.30000	0005000	327164.20000	2078774.30000	•57000-
414	F31877	UL	2614216+10000	6.78000	•	2614216-10000	•71000-
415	F32077	LL	17253.60000	44.14000	17253.60000	107088.40000	36.65000
4 16	F32177	LL	21 863. 5000 0	44.14000	21863.50000	107088.40000	36.65000
417	F32277	"	18645.00000	30. 34000	18645#00000	377959+00000	22.85000
418	F32377	LL	4589+00000	30+34000	4589.00000	409455.50000	22.85000
419	F32477	LL	19853+09000	27.58000	19863.00000	163782.20000	20.09000
420	F3578	LL	27869.30000	20+68000	27869. 30000	31496.60000	11.90000
421	F3678	LL	26385+60000	20e68000	26385+60000	31496.60000	11.90000
422	F3778	E.L.	33463.80000	21a 12000	33463.80000	62993.10000	12.34000
423	F3878	LL	29635.30000	21.44000	29635.30000	62993.10000	12.66000
424	F3978	LL	53465.00000	18.70000	53465.00000	81891.10000	9.98000
425	F31078	LL.	14985.00000	45.45000	14985.00000	62993.10000	36.67000
426	F31178	LL	16765.00000	45+45000	16765.00000	56693.80000	36.67000
427	F31478	LL	65645.00000	36043000	65645.00000	151183.60000	27.65000
428	F31578	LL	105961.00000	14#81000	105061.00000	359061.00000	6.03000
429	F31678	UL	925999e 50000	7.85000	325999•50000	925999.50000	•93000-
430	F31778	UL	2078774.30000	7.61000	685854.00000	2078774.30000	1.17000-
431	F31878	UL.	2614216 10000	7.46000	•	2614216.10000	1.32000-
432	F32078	LL	16253•00000	48s55000	16253.00000	107088.40000	39.77000
433	F32178	LL	22 863 • 90 0 0 0	48.55000	22863.90000	107088 • 40000	39.77000
4 34	F32278	LL	18390.30000	33e 38000	18890-30000	377959.00000	24.60000
435	F 32 3 78	£L.	6349•70000	33.39000	6849.70000	409455.50000	24.60000
4 36	F32478	LL	19993.70000	30.34000	19998.70000	163782.20000	21 • 56000
437	F3579	LL	28369.00000	22+72000	28369.00000	31496+60000	13.72000
438	F3679	L.L.	27401.60000	22. 72000	27401.60000	31496.60000	13.72000
439	F3779	LL	34 586 90000	23.20000	34586#90000	62993.10000	23.20000
440	F 3879	LL	31 53 1. 10000	23.65000	31531.10000	62993.10000	14.68000
441	F3979	LL	55463.70000	20. 72000	55463.70000	81891.10000	11.72000
442	F31479	LL	68345.70000	40+07000	68345.70000	151183.60000	31.07000
443	F31579	LL	121033.00000	16.29000	121033.00000	359061.00000	7.29000
444	F31679	UL	925999.50000	8.63000	331251-80000	925999.50000	•37000-
445	F31779	UL.	2078774. 30000	8.63000	331251.80000	2078774.30000	• 37000-
446	F31879	UL.	2614215.10000	8.20000	685596.00000 685596.00000	2614216.10000	•B0000-
447 448	F31979 F32079	UL.	1423645.40000	8.20000	685596.00000	1423645.40000	- 80000- 44-41000
449	F32179	66 66	9457.00000 6325.00000	53+41000 53+41000	9457e00000 6325e00000	107088•40000 107088•40000	44.41000
450	F32279		36455 00000	36.71000	36456+00000	377959.00000	27.71000
451	F32379	LL	13863.00000	36.71000	13663.00000	409455.50000	27.71000
- 31		6 6	73993604900	20811000	13003000000		21011000

•

			ng mrga ngguna				
NUNBER	• COLUMN.	AT	ACT IV ITY	INPUT COST	LOWER LIMIT.	UPPER LINIT.	.REDUCED COST.
452	F 32479	LL	41005-30000	33-38000	41005-30000	163782.20000	24.38000
453	F3580	LL	23690. 50000	24. 96000	28690. 50000	31496+60000	12.66000
4 54	F3680	LL	27401.60000	24.96000	27401.60000	31496.60000	12.66000
455	F3780	LL	35637. 80000	25.44000	35637.80000	62993.10000	13.14000
456	F 3880	LL	33891.60000	26.08000	33891.60000	62993.10000	13.78000
457	F3980	LL	57892.00000	22. 82000	57892.00000	81891.10000	10.52000
458	F31480	LL	71585.00000	44.08000	71 58 5. 00000	151183.60000	31.78000
459	F31580	LL	131487.10000	17.92000	131487.10000	359061.00000	5.62000
460	F31680	UL	925999.50000	9e 50000	501000+60000	925999.50000	2.80000-
461	F 31 780	UL	2078774.30000	9.21000	550000.80000	2078774.30000	3.09000-
462	F31880	UL.	2614216.10000	90 02000	563008.00000	2614216.10000	3.28000-
463	F31980	UL.	1423645.40000	9.02000	563008.00000	1423645+40000	3.280-J-
464	F32080	LL	17825.60000	58+75000	17825+60000	107088.40000	46.45000
465	F32180	LL	25693.00000	58.75000	25893.00000	107088.40000	46.45000
466	F32280	LL	36865.30000	40.39000	36865,30000	377959.00000	28.09000
467	F32380	LL	9536.70000	40.39000	95364 70000	409455.50000	28.09000
468	F 32480	LL	41996.00000	36 . 7 1000	41996.00000	163782.20000	24+41000
4 69	F31481	LL	75869.50000	48.49000	75869•50000	151183.60000	31.77000
470	F31581	LL	161831.60000	19.71000	101931-00000	359061.00000	2.99000
471	F3168B	UL	925999.50000	10.45000	521005.00000	925999.50000	6.27000-
472	F31781	UL.	2078774+ 30000	10.13000	563865.90000	2078774.30000	6.59000-
473	F31881	UL	2614216.10000	9.93000	675396.10000	2614216.10000	6.79000-
474	F31981	UL.	1423645.40000	9.93000	675396+10000	1423645.40000	6.79000-
475	F32081	LL	16849.00000	64.63000	16849.00000	107088.40000	47.91000
476	F32181	LL	2375C. 80000	64.03000	23750+80000	107088+40000	47.31000
477	F32281	ււ	36963+60000	44.43000	36963.60000	377959.00000	27.71000
478	F J 2381	LL	9863.50000	44.43000	9863.50000	409455.50000	27.71000
479	F32481	LL	42365-00000	40.39000	42365.00000	163782+20000	23.67000
480	F31482	LL	77353.10000	53.34000	77353-10000	151183.60000	28,96000
481	F31582	UL	359061.00000	21.69000	165132.00000	359051.00000	2.69000-
482	F31682	UL	925999.50000	11.49000	597465.30000	925999.50000	12.89000-
483 484	F31782	UL	2078774. 30000	11.15000	599801.00000	2078774.30000	13.23000-
485	F31882	UL UL	2614216+10000	10-92000	623698.40000	2614216.10000	13.46000-
486	F31982 F32082	LL	1423645+40000 17845+00000	10•92000 71•09000	623698.00000 17845.00000	1423645.40000	13.46000- 46.71000
487	F32182	LL	25836.50000	71.09000	25836.50000	107088.40000	46.71000
488	F32282	LL	37085.00000	48.87000	37085.00000	377959+00000	24.49000
489	F32382	LL	10365-30000	48.87000	10365.30000	409455.50000	24.49000
490	F32482	LL	42075.60000	44.43000	42675,60000	163782.20000	20.05000
491	F31483	LL	81 666 60000	58+67000	81666.60000	151183.60000	10.95000
4 92	F31583	UL	359051+00000	23.86000	179378,00000	359061.00000	23.86000-
493	F31683	UL	925999+50000	12.64000	629881.50000	925999.50000	35.08000-
494	F31783	UL	2078774.30000	12.26000	628645.00000	2078774.30000	35.46000-
495	F31883	UL	2614216-10000	12.01000	681536.70000	2614216.10000	35.71000-
496	F31983	UL	1423645+40000	12.01000	681223.00000	1423645.40000	35.71000-
497	F 32083	LL	19985-80000	78.20000	19985.80000	107088.40000	30.48000
498	F32183	LL	29536+ 20000	78. 20000	29536+20000	107088+40000	30.48000
499	F32283	LL	37265-00000	53.76000	37265.00000	377959e 00000	6.04000
500	F32383	LL	19-363-80000	53.70000	19863+80000	409455.50000	6.04000
501	F32483	LL	42725.30000	48a 87000	42725+30000	163782.20000	1.15000
502	F31484	UL.	151383.60000	64.54000	85347.60000	151183.60000	4.95000-

.

:

.

NUMBER .COLUIAN. AT ...ACTIVITY... .. IMPUT COST... ..LOWER LIMIT. ...UPPER LIMIT. .REDUCED COST.

			•	1) #		٦ ¢			-			-	71	-		- 7)											•				-		-	517 F3			-				-		-	_			IUNDER .C
_				-					F4176	F41975	F41275	•		•.	•	-	-	-	U)						-	-		(J)	-	-	•	•	-	F31885		-		•	•	•	•	•			•		- COLUIAN-
= F	-	- /	= ;	Fi	F	F	2	F	٢	F	F	F	F	F	F	F	-	F	85	= ;	; ;	= ;	- 6				;	: ב	۶	٢	F	2	5	F	: S	۶	F	۶	٢	۶	F	Fi		5	= {	= 6	A T
50431e 80000		1677745.00000		73873. 50000	657235.40000	•	17009-00000	1453. 10000	21 673. 90000	36931020000	20351-00000	18999.30000	12345.60000	24543.70000	125897.00000	56332. 90000	42683.70000	385677-10000	71630.60014	56501-80000	1 63 4 75. 00 00 0			5 # A70 - 000 00		000000000000000000000000000000000000000		163782.20000	409455e 500@0	00000000000	.35265.60000	27003.00000	1423645+40000	261421 6 10000	00000 4666256	359061.00000	151103.60000	163782•20000	409455+50000	37795% 00000	31 777.00000	25000.00000	1423645-40000	2614216-10000		35900 - 50000	ACTIVITY
10-48000		25-95000	7-67000	13.77000	23.14000	8• 3 3000	34.84000	48. 53000	13.18000	29.40000	29.40000	31. 50000	42.96000	00056.01	8. 58000	9.72000	27.93000	25. 54000	7.67000	0.70000	25.20000	7-1/5000	12-87000	21-61000	3- A1000	00000 000		59.13000	65.05000	65.05000	94. 62000	94. 62000	14 53000	14a 53000	136 30000	28.87000	71.00000	53.76000	59.13000	59-13000	85 . 02000	86.02000	13-21000	13.21000	13-91000		 A SUPUT COSTAN
58431-80000		167745_00000		73873450000	657235. 40000	•	17009.00000	8453 10000	21673+90000	36531+ 20000	28351.00000	1995.30000	12345.60000	24543.70000	125897.00000	58332.90000	42683.70000	385677+10000	58590-20000	56591-80000	163475-00000		71689-50000	00005-P548255	1053550000	0000+44010		45685.30000	27786.70000	39685.00000	35256 60000	27008+00000	699523.60000	721090-00000		223603.50000	91555e 30000	43925.30000	25676.90000	38006+00000	31777.00000	25006+ 00000	691131-60000	701581-30000	471015.40000	A 351 1 2 . 00000	eelower Likite
75591.80000		220476-10000	184979-50000	94489.70000	1 385 84 9. 50000	116537.30000	52284.30000	37795.90000	29606.80000	134175.40000	139844 .80000	58693.80000	66142.80000	34646+20000	212916,90000	67402 .70000	110238.00000	529142.50000	75591.60000	75591 80000	220476.10000	188979-5000	94489-70000	1385849.50000	00005-255911	52284-30000		163782.20000	409455-50000	377959.00000	107088.40000	107088.40000	1423645.40000	2614216-10000	00005 - 422 8205	00000 1 00000	151183.60000	163782 .20000	409455.50000	377959.00000	107088.40000	107088.40000	1423645.40000	2614216-10000	2078774-30000	025090.50000	. UPPER LIMIT.
4.18000		20-0099	1-37000	7.47000	16.84000	2.09000	28, 54000	42.23000	6.88000	21.73000	21.73000	23.83000	35+29000	3.25000	00016.	2.05000	20+26000	17487000	•	2-12000	17.53000	-51000-	5=20000	00096 * 51				19.55000-	13-63000-	13.63000-	15.94000	15.94000	64 - 1 5000-	04.15000-			7.58000-	15.73000-	10+36000-	10.36000-	16+53000	16.53000	56.28000-	56.28000-	55-58000-		•REDUCED COST.

							DEDUCED COST .
NUMBER	. COLUAN.	AT	#**ACTIVITV***	INPUT COST	LOWER LIMIT.	UPPER LINIT.	•REDUCED COST •
554	F41276	LL	43532.70000	29.88000	43532.70000	110238.00000	23.58000
555	F41376	LL	63477,80000	10.40000	63477e80000	67402s70000	4.10000
556	F41476	LL	127546.00000	9.18000	127546.00000	212916.90000	2.88000
557	F41576	LL	26348.90000	11.68000	26348.90000	34646.20000	5.38000
558	F41676	LL	14879.50000	45.97000	14879.50000	66142.80000	39.67000
. 559	F41776	LL	19250.00000	33, 70000	19250.00000	56693.80000	27040000
560	F41876	LL	29125. 70000	31.45000	29125.70000	139844 .80000	25.15000
561	F41976	LL	37555.20000	31+45000	3755 5e 2 0 0 0 0	1 34 175. 40000	25.15000
562	F4177	LL	23781. 60000	14.10000	23781.00000	29606.80000	6.61000
563	F4277	£E.	89790 40000	51.93000	8979.40000	37795.90000	44.44000
564	F4377	LL	18045.30000	37.28000	18045.30000	52284.30000	29. 79000
565	F4477	LL	•	8+ 97 00 0	•	116537+30000	1.480.0
506	F4577	LL	659108,20000	24.76000	659108.20000	1385849.50000	17+27000
567	F4677	LL	74333.60000	14.73000	74333.60000	94489.70000	7.24000
568	F4777	LL	. •	8.20000	•	188979.50000	•71000
569	F4877	LL	168256.00000	28.85000	168256.00000	220476.10000	21.36000
570	F4977	LL	594536 20000	11.21000	59453.20000	75591.80000	3.72000
571	F41077	LL	63400.00000	8.78000	63400.00000	75591.80000	1.29000
572	F41177	LL	392377. 70000	29.24000	392377.70000	529142.50000	21.75000
573	F41277	LL	45272. 50000	31.97000	65272.50000	110238.00000	- 24.48000
574	F41377	LL	63987.60000	11.13000	63987.60000	67402.70000	3.64000
575	F41477	LL	128187.30000	9.82000	128187.30000	212916+90000	2.33000
576	F41577	LL	27236 50000	12.50000	27238.50000	34646.20000	5.01000
577	F41677	LL	15763-10000	49819000	15763.10000	66142.80000	41.70000
578	F41777	LL	21 100.00000	36.06000	21100.00000	56693,80000	28+57000
579	F41877	LL	31 273. 40000	33.65000	31273+40000	139844.80000	26.16000
580	F41977	LL	42625.30000	33.65000	42625, 30000	134175+40000	26.16000
581	F42077	LL	•	7.77000	•	1637822.10000	•28000
582	F4178	LL	25237 40000	15.09000	25237.40000	29606.80000	6.31000
583	F4278	LL	9121.20000	55.56000	9121.20000	37795.90000	46.78000
584	F4378	LL	19273.90000	39.73000	19273.90000	52284.30000	30.95000
585	F4478	LL	•	9.60000	•	116537.30000	•82000
586	F4578	LL	673213.10000	26.39000	673213+10000	1385849.50000	17.61000
587	F4678	LL	77286 70000	15.76000	77286.70000	94489.70000	6+98000
588	F4778	85	138595.80016	8.78000	•	188979.50000	· •
589	F4878	LL	172108.00000	30.74000	172108.00000	220476 . 10000	21+95000 3+22000
590	F4978	LL	62530.70000	12.00000	-62530-70000	75591.80000	
59 <u>1</u> 592	F41078	LL	64 893. 70000	9640000	64893.70000	75591.80000	•62000 22•51000
593	F41178 F41278	LL	397426.40000 49326.00000	J1∎29000 34∎08000	397426+40000 49326+00000	529142•50000 110238•04000	25.30000
594	F41378	LL		11.91000	64273.60000	67402.70000	3+13000
595	F41478		64 273 60000 132 207 - 30000	10.51000	1 32 20 7. 30000	212916.90000	1.73000
596	F41578	LL	29432080000	-13.37000	29432080000	34646.20000	4.59000
597	F41678			52.63000	17342.60000	66142.80000	43.85000
598	F41778	LL LL	17342.60000 23222.20000	38e 4 3000	23222.20000	56693.80000	29.65000
599	F41878	LL	33282 50000	35.87000	33282.50000	139844.80000	27.09000
600	F41973	եե	46386+40000	35.87000	46386+40000	134175.40000	27.09000
601	F42078	UL	1637822.10000	80 32000	40300840000	1637822+10000	•46000-
602	F4179	LL	26 389.00000	16.15000	26389.00000	29606.80000	7.15000
603	F4279	LL	9863.40000	59.45000	9863.40000	37795.90000	50.45000
604	F4379	LL.	21863.70000	42.51000	21863.70000	52284.30000	33+51000
/							

,

3.0000	00006 0016212	136875480000	1300200	212916.0000	Ę	F#1481	650
1.96000-	67402.70000	66787-20000	14.70000	67402.70000	۶	F41381	654
25.03000	110238.00000	53535,80000	A1.75000	53535.80000	۶	F41281	. 653
21-61000	529142.50000	399000-60000	38.33000	39900 00 00 00 00 00	٢	F41181	652
5.21000-	75591+80000	68973.80000	11.51000	75591-80000	۶	F41081	651
1.85000-	75591.80000	66676 ₈ 30000	14.87000	75591.80000	۶	F4981	650
20.95000	220476 . 10000	176673.60000	37.67000	176673.60000	۶	F4881	649
5.97000-	188979.50000	٠	10+75000	199640-20000	۶	F4781	648
2-81000	94 489 + 70000	84674.70000	19.53000	34674.70000	۶	F4681	647
15+61000	1385849+50000	696235+20000	32+33000	696235-20000	۶	F4581	0 4 0
4.95000	116537.30000	•	11.77000	1 16 53 7. 30 00 0	۶	F4481	540
31.95000	52284.30000	24869=300()0	48.67000	24 85% 30 00 0	F	F4381	
50.78000	37795.90000	10879. 60000	67.50000	10879-60000	F	F4281	643
1.77000	29606.80000	28399.40000	180 49000	28399.40000	۴	F4181	642
2.67000-	1637822.10000	•	0006906	1637.322. 10000	۶	F42080	641
28.76000	134175-40000	49878.10000	41.06000	00000 9294 5000	F	F41980	640
28.76000	139844.80000	37238 .40000	1 a06000	37.23 8 40000	F	F41880	619
31 . 70000	56693.80000	24893.80000	44. 00000	24 89 3+ 80000	۶	F41780	638
47.96000	66142.80000	16329-50000	60 a 26000	18329• 5000 O	۶	F41680	637
3.0100	34646.20000	30243.00000	15.31000	30.24 3+ 00 00 0	۶	F41580	636
•13000-	212916.90000	137399+20000	12.17000	212916-90000	۶	F4 1480	635
1.49000	67402.70000	00000.0740000	13,79000	66476.90000	F	F41380	4L9
26.71000	110238.00000	52326.80000	00010	52326.80000	F	F41280	633
23.53000	529142-50000	398222-50000	35.83000	398222.50000	۶	F41180	632
-00045 • 1	75591.80000	6678 3• 200 00	10.76000	75391.80000	۶	F41080	631
00065•1	75591.80000	64897.00000	13.89000	00000 see	٢	F4980	630
22. 72000	220476+10000	174287.00000	35.02000	174287.00000	F	F4880	629
2.25000	188979.50000	•	10.05000	188979-50000	۶	F4780	628
5.95000	94489.70000	83192.40000	18.25000	83192.40000	۶	F4680	627
17.92000	1385849.50000	695386.70000	30+22000	695386•70000	F	F4580	626
1.31000-	116537.30000	•	10+99000	1 1633 r. 30000	۶	F#480	625
33+18000	52284+30000	22222. 30000	45.48000	2222-30000	۶	F4380	624
50.79000	37795+90000	10102.70000	63.09000	10102-70000	F	F4280	623
4.98000	29606+80000	26833.00000	.17.28000	26033.00000	ŗ	F4180	622
_	1637822.10000	•	9.0000	520632.70011	88 8	F42079	621
29.38000	134175-40000	47563+20000	38. 38000	47551+20000	F	F41579	620
29-38000	139844.80000	35432. 60000	38.38000	35432. 60000	-	F41879	619
32-12000	56693.80000	23673.70000	+1+12000	23673. 70000	5	F41779	618
47. 31 v00	66142.80000	17781-80000	56.31000	17781.80000	2	F41679	617
5.31600	34646.20000	3004 0. 00000	14- 31000	30040.00000	5	F41579	616
2.37000	212916.90000	135998-10000	11-37000	135096-10000	= ;	F41479	615
3.84000	67402. 70000	65148.90000	12.89000	65 48.90000	F	F41379	614
27.46000	110238.00000	49483.00000	300 4 6000	49483.00000	2	F41279	613
24.48000	529142.50000	397426+40000	33.48000	397426 . 40000	۶	F41179	513
1.00000	75591 . 80000	65267.30000	10-05000	65267.30000	۶	F41079	611
3.98000	75591.80000	63645.80000	12.98000	63645.80000	۶	F4979	019
23.90000	220476.10000	173025.00000	32. 90000	173025.00000	F	F4879	609
	188979-50000	•	90000	•	۶	F4779	608
8.06000	94 489. 70000	8247 3. 50000	17.05000	82473.50000	۶	F4679	607
19-24000	1385849+50000	693416.70000	28.24000	693416, 70000	۶	F4579	909
1.27000	1 16537. 30000	•	10-27000	•	۶	F4479	605
					2	•	
DENICED COST.	ANDORD I THIT.				*		

NUMBER .COLUMN. AT ...ACTIVITY... ..INPUT COST.. ..LOMER LIMIT. ..UPPER LIMIT. .REDUCED COST.

706	3	704	703	702	104	700	669	963	469	969	695	69	693	692	169	069	689	688	687	686	685	684	683	682	189	680	679	678	677	676	673	674	673	672	671	670	669	668	667	666	665	664	663	662	199	660	659	658	150	656	
F+584	F4484	F4364	F4284	F4184	F42083	F4 198 3	F41883	F41783	F41633	F41583	F41483	F41303	F41283	F41183	F41083	F4983	F4883	F4783	F4683	F4583	F4483	F4383	F4283	F4183	F42082	F41982	F41882	F41782	F41682	F41582	F41482	F41382	F41282	F41182	F+1082	F4982	F4882	F4782	F4682	F4582	F4482	F4382	F4282	F4182	F42081	F41981	F4 188 1	F41781	F41681	F41581	
۶	۶	۶	٢	۶	۴	F	F	F	٢	۶	ĥ	۶	۴	۶	F	۶	۴	۶	۶	ç	۶	۶	F	۶	ç	F	٢	۶	F	۴	۴	ç	F	-	Ē	ĥ	F	ç	ç	٢	۶	۶	۶	۶	۶	٢	F	F	r F	۶	1
1385849-50000	114537.30000	52204. 30000	12000+90000	29505.80000	1637822-10000	5.3809.80000	39786.50000	2867'3.80000	19789.70000	34646.20000	212916.90000	61402.70000	56783+20000	529142.50000	75591.80000	75591.80000	220476+10000	18(1979e 50000	91489.70000	1385849+50000	116537.30000	25932.20000	11897.60000	29606.80000	1637822.10000	52673.80000	38 34 3. 00000	27536.80000	00000 • 1 00 0 1	34.64 6+ 20000	212516.90000	67402e70000	5555 8a 00000	400109-00000	75591. 80000	75591.80000	177277-80000	188,979.50000	94 489. 70000	697887 - 8000 0	116537.30000	25277.70000	11343.80000	00008 + 00000	1637822.10000	51 345 10000	37999.60000	26 32 2. 70000	13973 50000	34640020000	
40+38000	14.41000	60•78000	82.70000	22.65000	11.80000	50+31000	50.31000	53. 90000	73.82000	18.76000	14.000	100000	47.79000	0000B*E*	13.18000	17.02000	4 J. 1 2000	12.31000	22.36000	37. 02000	13. 47000	55.72000	77.29000	21.17000	11.03000	47.02000	↓7 . 0 2000	50.37000	00066.89	17.53000	000E6*E1	15.70000	44.67000	41.02000	12. 32000	15.91000	A0- 30000	11.51000	20-90000	34. 60000	12.59000	52.03000	72.23000	19.78000	10.31000	000000	00046 •E*	•7•08000	640 47000	160 38000	
702889-60000	•	26382.70000	12000-90000	28737.70000	•	53809-80000	39786.50000	28673.80000	19789.70000	32676.60000	141343.00000	00000 • 986 99	56 783, 200 00	+61203-00000	70010+ 30000	67782.90000	177865.10000	•	86338 80000	698334.70000	•	25932.20000	11897.80000	28667.60000	•	52673.80000	3834 3e 00000	27536.80000	19001.00000	31989.70000	139324 .50000	66900 . 80000	5555 8.00000	400109-00000	69386+10000	67283.60000	1 7727 7. 80000	•	86 36 7. 00 0 0 0	697887.80000	•	25277470000	11343080000	29133, 30000	•	51345+10000	379998 50000	26322.70000	18978,50000	31432.20000	
1 385 84 9. 50000	116537.30000	52284+30000	37795.90000	29606.80000	1637822.10000	1 34 175.40000	139844.80000	55693.80000	56142 (-80000	34646+20000	212916+90000	67402.70000	110238-00000	529142.50000	75591.80000	75591.80000	220476+10000	188979-50000	94489.70000	1385849.50000	116537.30000	52284.30000	37795.90000	29606.80000	1637822.10000	134175.40000	139844.80000	56693.80000	66142.80000	34646.20000	212916-90000	67402.70000	110238.00000	529142.50000	75591.80000	75591.80000	220476=10000	188979-50000	94 4 89. 70000	1385849.50000	116537.30000	52284 + 30000	37795.90000	29606.80000	1637822 . 10000	134175.40000	139844.80000	56693.80000	66142 . 80000	34646.20000	
29.11000-	55+08000-	8.71000-	13.21000	46.84000-	35.92000-	2.59000	2.59000	6.18000	26.10000	28.96000-	32.81000-	30.82000-	.07000	3.83000-	34 . 54 000-	30.70000-	4.60000-	35+41000-	25.36000-	10.70000-	34.25000-	8.00000	29.57000	26.55000-	13.35000-	22.64000	22.64000	25.99000	44.61000	6.85000-	10.45000-	8.59000-	20.29000	16.64000	12.06000-	8. 47000-	15.92000	12.87000-	3.48030-	10.22000	11. 79000-	27.70000	47+85000	A = 60000 -	6+41000-	27.22000	27.22000	30.36000	47.75000	• 34000-	

EXECUTOR.	
N/PS X	
RELEASE	
MOD	
LEVEL	
UN.	

NUNBER • COLUMN. 47 ••••ACT# VI TV= •• .. INPUT COST... .. LONGR LINET. • UPPER LIMITS • REDUCED COST.

NUMBER	. COLUNN.	AT	• • • • ACT[V] TY• • •	INPUT COST	LONGR LINIT.	UPPER LIMIT.	.REDUCED COST.
909	F51777	F	10284-00000	3.1 ₀ 4 3000	10284.00000	264571+30000	25, 94000
810	P51877	۶	108562.70000	6. 41000	87411.60000	108562.70000	1.08000-
811	F6177	۶	667727 - 50000	2+55000	•	667727.50000	4.94000-
812	F6277	F	67242.00000	14.21000	67242.00000	125986.30000	
813	F6377	: F	00000 -00000			00005406621	
	F677					00002010200	
210 C10	F6677	= p	1 120- 10000 00000 00000	000 25 ° 01	11329-10000	182680-20000	22.88000
817	F6777	FŞ	11752 00000	30,37000	11752.00000	176380-80000	
818	F6877	51	38770-00000	21, 97000	3877 0- 000()0	00000 "E81 151	
618	P6977	۶	96 800. 00000	6. 4 1000	94271.00000	96800.00000	
820	F5178	5	73324 60000	154 54000	73324-60000	220476.00000	6.76000
821	F5278	F	00008 • 1 5 4 57	15a 53000	75631.80000	229476.00000	6.75000
822	F5378	۶	131 87%+ 30000	120 87000	01070°910	565938.40000	4.09000
823	F5478	۶	72000-00000	15+98000	72000e 00000	163782.20000	7.20000
824	F5578	٢	00000	15.99000	69334 .00000	163782.20000	7.21000
825	F5678	۶	106201.70000	1 4a 0 3000	1 062010 70000	346462.40000	5.25000
826	F5778	۶	60877 - 30000	14.21000	60877+30000	850407.70000	5.43000
827	F5978	۶	10742.60000	200 53000	40742.60000	113387.70000	11.75000
828	F51078	۶	15834.40000	19-31000	45834. 40000	132285.60000	10.53000
829	F51278	۶	38425.00000	21.71000	38426.00000	157482.90000	12-93000
830	F51378	F	45590+00000	19.23000	45590-00000	201578.10000	10.45000
831	F51478	۶	4592.2. 80000	23.01000	45922.800()O	50394.50000	14.23000
832	F51578	F	44 86 0e 00 00 0	20.48000	44850a0001)0	62993-10000	11.70000
833	F51678	۶	3332338.20000	3.05000	٠	3332338.20000	5.73000-
834	F51778	2	10734.00000	35.43000	10734-00000	264571 .30000	25.5000
	701070	۶:	0000/0700001				000F491
837	F6278	5		15-20000	58345-00000	125986-30000	
838	F6378	-	00000	15 20000	69666+ 00000	125986-30000	
639	F6478	5	74 799 50000	13.51000	74799-50000	302 367 - 20000	A. 73000
840	F6578	۶	14587.90000	27.65000	14587490000	25197. 30000	18.87000
1+8	F6678	٢	12090.00000	32.49000	12090.000000	182680.20000	23.71000
842	F6778	۶	12373.00000	32. 49000	12373.00000	176380.80000	23.71000
843	F6878	F	39833.00000	23.50000	39833.00000	151183.60000	14. 72000
844	P6978	۶	96 80 0a 00 0 0 0	5. 85000	95582.60000	96800.00000	1.92000-
845	F5179	F	74565.00000	16.47000	74656.00000	220476.00000	7.47000
846	F5279	۶	77343.50000	16.44000	77343-50000	220476.00000	7-46000
847	F5379	۶	82399.00000	13+ 64000	82399.00000	565938.40000	4.64000
848	F5479	٢	72244-60000	16.94000	72244-60000	163782.20000	7.94000
849	F5579	۶	71438 60000	16.95000	71438-60000	163782.20000	7.95000
850	F5679	F	107433.70000	14.85000	107433 70000	346462.40000	5.88000
951	F5779	۶	61 93 7+ 00000	15.05000	61937.00000	850407.70000	6.0000
852	F5979	۴	41278-50000	21. 75000	41278-50000	107088.40000	12.76000
85 J	F51079	F	46427.30000	20.47000	46427+30000	132285.60000	11.47000
854	F51279	F	391 3 9 60 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23.02000	39119.60000	157482.90000	14.02000
855	F51379	۶	47638.00000	20. 39000	47638.00000	201578-10000	
856	F51479	F	47776+ 50000	24. 39000	47775-50000	50394 • 50000	
857	F51579	۶	45125.00000	21.71000			12.71000
	F51679				451254 00000	00001 8545 20	
000		ĉ	3332338.20000	3.17000	+5125+00000	00002 •855 26	20000

EXECUTOR. NPSH RELEASE & NOD LEVEL 5

NUMBER	• COLUMN•	AT	•••ACTEVITY•••	INPUT COST	LOWER LIMIT.	UPPER LIMITS	• REDUCED COST •
860	P51879	LL	108562.70000	7.34000	8865 0.90000	108562.70000	1.66000-
861	F6179	UL	667727.50000	2.92000	•	667727.50000	6.08000-
862	F6279	LL	69731.70000	16026000	69731.70000	125986.30000	7.26000
863	F6379	LL	70244.40000	16026000	70244.40000	125986+30000	7.26000
864	F6479	LL	75578.20000	14046000	75678. 20000	302367.20000	5.46000
865	F6579	Ē	15592. 60000	29.59000	15692.60000	25197.30000	20.59000
866	F6679	L.L.	12549.70000	340 77000	12549.70000	182680.20000	25.77000
867	F6779	LL	12841.80000	34.77000	12801 aB0000	176380.80000	25.77000
868	F6879	LL	41622.90000	25015000	41622.90000	151183.60000	16+15000
869	P6979	UL	96800.00000	7.34000	96777a 40000	96800.00000	1.66000-
870	F5180	LL	75278.60000	17.46000	75278.60000	220476.00000	5.16000
871	F5280	ᇿᇿ	78635.60000	17,45000	78635060000	220476.00000	5.15000
872	F5380	LL	83465.90000	14.46000	83455.90000	566938 . 40000	2.16000
873	F5480	LL	73639,20000	17.95000	73639a 20000	163782.20000	5.65000
874	F 5580	LL	72540.00000	17.96000	72540,00000	163782.20000	5. 660 00
875	F5680	LL	110125.60000	15,77000	110125+60000	345452.40000	3.47000
876	F5780	LL	52678 .9 0000	15.97000	62678+90000	850407 , 70000	3.67000
877	F5980	LL	42 87 7 e 50000	23.07000	42877.50000	100789.00000	10.77000
878	F51080	LL	47388.60000	21.70000	47358, 60000	132285+60000	9.40000
879	F51280	LL	41280.00000	24+40000	41280.00000	157482.90000	12.10000
880	F51380	LL	48474+ 30000	21+61000	48474.30090	201578.10000	9.31000
681	F51480	LL	46883.00000	25.84000	48883.00000	50394, 50000	13.56000
882	F51580	LL	46267.30000	23.01000	46257.30090	62993+10000	10.71000
883	F51680	UL	3332338,20000	3.30000	•	3332338.20000	9.00000-
884	F51780	LL	12:256.40000	39.81000	12256.40000	264571.30000	27. 51000
885	P51880	UL	108562.70000	7.85000	89785.00000	108562.70000	4.45000-
886	F6180	UL	667727.50000	3.12000	•	667727. 50000	9.18000-
887	F6280	LL	70679+00000	17.40000	70579.00000	125986.30000	5.10000
888	F6380	LL	71422.50000	170 40000	71422.50000	125986.30000	5.10000
688	F6480	LL	76238,60000	15.47000	76238.60000	302367.20000	3.17000
890	F6580	LL	19885.00000	31.66000	15885.00000	25197.30000	19.36000
891	F6680	LL	13111.00000	37-20000	13111.00000	182680.20000	24.90000
892	F6780	LL	13242.00000	37.20000	13242.00000	176380.80000	24.90000
893	F6880	LL	42002.00000	26.91000	42002 00000	151183.60000	14.61000
894	P6980	UL	96800.0000	7.85000	96543.00000	96800.00000	4.45000-
895	F5181	LL	70832.00000	18.51000	76832.00000	220476.00000	1.79000
896	F5281	LL	79211.50000	18.50000	79211.50000	220476.00000	1.78000
897	F5381	UL	565938.40000	15.33000	84275+00000	566938.40000	1.39000-
898	F5481	LL	74908.60000	10.03000	74998 , 60000	163782,20000	2.31000
899	F5581	LL	73777.60000	19.04000	73777.60000	163782.20000	2.32000
900	F5681	85	300901-80015	16 72000	119250-00000	348462.40000	•
901 902	F5781	LL	63892+40000	16+93000	63892+40000	850407.70000	•21000 7•74000
	F5981		437840 00000	24.46000	43784.00000	94489.70000	
903 904	F51031 F51281	LL.	43633.00000 42272.60000	23e00000 25e86000	48633e00000 42272e60000	132285.60000 157482.90000	6.28000 9.14000
905	F51381	LL Ll	49125.00000	22.91000	4912500000	201578,10000	5.19000
905	F51481		49432. 00000	27.41000	49432.00000	50394.50000	10.69000
907	F51581		47144.50000	24. 39000	47144.50000	62993.10000	7.67000
908	F51681		3332338.20000	3.43000		3332338,20000	13,29000~
909	F51781	ũ	13339.60000	42.20000	13389-60000	264571.30000	25.48000
910	P51881	UL	108552.70000	8.40000	92373.80000	108562.70000	B.32000~
					20.0000000		

	1 +16 1 116			NUMBER .
5501	F6381 F6481	6281		• COLUMNa
٢	<u>ኑ</u>	F 1	5	AT
17234.60000	72623.00000 302367.20000	71525.30000	6 67 72 7× 500.00	+++ACT IV ITV ++
33.80000	18.62000 16.53000	10.02000		ENPUT COST
17234.60000	72623.00000 7644 0, 50000	71525a 30000	•	estower - IMITe
25197.30000	125986.30000 302367.20000	125986+ 30000	667727 .50000	UPPER LINIT.
17.16000	1.90000 17000-	00000	13-38000-	• REDUCED COST.

196	960	959	958	957	956	955	954	953	952	951	950	646	948	947	946	945	944	943	942	146	940	939	938	937	936	935	934	933	932	156	930	929	928	927	926	925	924	923		0.01		010 910	116	916	915	+16	913	912	911	•
F6183	P51803	F51783	F51603	F51583	F51483	F51303	F51203	F51083	F5983 ·	F5783	F5683	F5583	F5483	F5383	F5283	F5183	P6982	F6882	F6782	F6682	F6582	F6482	F6382	F6282	F6182	P51882	F51782	F51602	F51502	F51482	F51302	F51282	F51082	F 5982	F5782	F 56 82	F5582	F5482				18994	F6781	F6681	F5581	F6481	F6381	F6281	F6181	
۴	۶	۴	۶	ç	F	۴	F	F	۶	۶	۶	۶	۶	۶	٢	۶	۴	F	F	f	F	۶	۴	۴	۶	۴	F	ç	F	۶	۶	۶	85	F	F			F	Ē	Ş	Ę	F	F	۶	٢	۶	۶	r :	۶	
667'727• 5000 O	100562+70000	264571.30000	33323380 20000	62993-10000	50394 • 50000	201 578. 10000	157482.90000	132285.60000	81.891. 10000	850407•70000	346462+40000	16.1782-20000	163782.20000	560938+40000	220476+00000	220476.00000	96800.00000	4352 3 -10000	15412.00000	15207-80000	1844 6. 00000	302367.20000	125986. 30000	125986.30000	667727-50000	100562.70000	13787-50000	3332336,20000	48535+60000	50272.00000	201 578. 1 0000	42879.00000	96870+49998	44688.50000	850407.70000	346.462 40000	163782-20000	163782.20000				42 73 7. 000 00	13970-40000	13789.70000	1723++60000	302 367• 20000	72623.00000	71525.30000	667727e 50000	
3-83000	9 . 62000	47.42000	3.71000	27.41000	30.60000	25. 74000	29.05000	25,84000	27.48000	19.02000	18.78000	21.39000	21.38000	17.22000	20.79000	20. 80000	000000	30. 81000	42.59000	42.59000	36-25000	17.71000	19.93000	19-93000	3. 58000	00066 98	44.73000	3.57000	25.84000	29.05000	24 . 23000	27.41000	24. 38000	25+92000	17.94000	17-72000	20-14000	20-17000				28.0000	30018000	39.81000	33.80000	16. 55000	18-62000	10-02000	3.000	
•	93780 - 00000	14331.50000	•	49237.00000	50284.30000	51129.00000	42973-40000	49510.00000	45770.00000	67511.00000	127232.70000	75127.40000	76361.20000	85228.00000	8244 7. 50000	77566.00000	9577.00000	43523.10000	15412.00000	15207.80000	18446.00000	77188.90000	73732.60000	72630.00000	•	93133.40000	13787.50000	•	48535 60000	50272.00000	50344.70000	42879.00000	49126.00000	44688.50000	66423.00000	123722-00000	74875+60000	75256+00000				42737+00000	13970.40000	13789.70000	17234.60000	7644 0, 50000	72623.00000	71525a 30000	•	
667727-50000	108562.70000	264571 -30000	3332338+ 20000	62993 . 10000	50 394 . 50000	201578 10000	157482-90000	132285.60000	00001 • 168 18	850407.70000	346462.40000	163782.20000	163782.20000	566938.40000	220476.00000	220476-00000	00000 000896	151183+60000	176380.80000 .	182680.20000	25197.30000	302367-20000	125986+30000	125986.30000	667727.50000	108562 .70000	264571.30000	3332338+20000	62993.10000	50394 - 50000	201578.10000	157482.90000	132285.60000	88190.40000	850407=70000	345452-40000	163782.20000	163782 - 20000	566978-60000			101103-00000	1 70 380 80000	182680.20000	25197.30000	302367.20000	125966.30000	125986+ 30000	667727 •50000	
43.89000-	38.10000-	-30000-	44.01000-	20.31000-	16, 92000-	21.98000-	18-66000-	21.88000-	20+24000-	28.70000-	28.94000-	26.33000-	26.34000-	30+50000-	26.93000-	26.92000-	15+39000-	5-43000	18.21000	18+21000	11.57000	6.67000-	4.45000-	4.45000-	20.80000-	15.39000-	20.35000	20.81000-	1.48000	4.67000	-10000-	3 0 0 0 0 0 0	•	1.54000	6.44000-	5a 66000-	4.20000-	4.21000-	1 -13000-			1200200	23.0000	23.00000	1 7. 1 6000	-17000-	1.90000	00006 • 1	13.38000-	

EXECUTOR. HP3X RELEASE 1 HOD LEVEL S

	EXE	COTO	Ne MPSX HELCAS	E 1 HOD CEVEL 3			•
NUMBER	.COLUNN.	AT	•••ACTIVITY	INPUT COST	LOWER LIMIT.	UPPER LIMIT.	•REDUCED COST
962	F6283	UL	125986. 30000	21. 32000	73271.00000	125986.30000	25.40000-
963	F6383	υ.	125986. 30000	21.32000	74342.70000	125986.30000	26.40000-
964	F6483	UL	302367+20000	18.95000	78271.50000	302367.20000	28.77000-
965	F6583	UL	25197.30000	38.79000	19118.60000	25197 . 30000	8.93000-
966	F6683	UL.	182680,20000	45.58000	15871.40000	182680.20000	2.14000-
967	F6783	GL.	176380.80000	45, 58000	16923.80000	176380+80000	2.14000-
968	F6883	υL	151183,60000	32.97000	44092+50000	151183.60000	14.75000-
969	P6983	UL.	95800,00000	90 62000	96777.00000	95800.00000	38+10000-
970	F 51 84	UL	220476,00000	22.04000	78209.00000	220476.00000	47.45000-
971	F5284	UL.	220476,00000	22.03000	84 007#50000	220476.00000	47+46000-
972	F5384	UL	566938.40000	18-26000	88116, 5000 0	566938,40000	51-23000-
973	F 5484	UL	163782,20000	22.67000	77408+00000	163782.20000	46.82000-
974	F5584	UL,	163762.20000	22. 68000	76283e 70000	163782.20000	46.81000-
975	F 5684	UL	345452,40000	19.91000	131421.90000	346462.40000	49,58000-
976	F5784	VL.	850407, 70000	20.16000	69230.00000	850407.70000	49.33000-
977	F5984	UL,	75591.80000	29.13000	46119.00000	75591 e 80000	40.36000-
978	F51084	UL,	132285,60000	27.39000	51178.00000	132285.60000	42.10000-
979	F51284	UL	157482.90000	30- 30000	43682.00000	157482.90000	38.69000-
980	F51384	uL	201578,10000	27 •28000	51678.90000	201578.10000	42.21000-
981	F51484	UL.	50394, 50000	32.64000	•	50394.50000	36.85000-
982	F51584	UL	62993+10000	29.05000	50 34 7 50000	62993.10000	40,44000-
983	F51684	UL	3332338,20000	3. 86000	•	3332338 • 20000	65-63000-
984	F51784	UL	264571.30000	50-26000	15664.00000	264571.30000	19.23000-
985	P51884	UL	103562,70000	10.30000	95212.00000	108562-70000	59-19000-
986	F6184	UL.	667727.50000	4.10000	•	667727•50000	65-39000-
987	F6284	UL	125986,30000	22.81000	74347.80000	125986.30000	46,68000-
966	F6384	UL.	125986, 30000	22.81000	75256.00000	125986.30000	46+68000-
989 990	F6484	UL	302367.20000	20.28000	7548 2.00000	302367.20000	49.21000-
991	F6584	UL.	25197.30000	41.50000	21326.80000	25197.30000	27.99000-
	F6684	UL	182680.20000	48.77000	16997.20000	1 8268 0• 20000 1 76 38 0• 80000	20.72000-
992 993	F6784 F6884	UL.	175180.80000	48+77000	17250.00000	151183.60000	20,72000- 34,21000-
994	P6984	UL	151183.60000	35e 28000 10e 30000	44751+60000 96777+00000	96800=00000	59.19000-
995	F5185	UL.	96800.00000	23.37000	7924 7.70000	220476+00000	55.31000-
996	F5285	UL.	220476.00000	230 35000	85336.00000	220476.00000	55.33000-
997	F5385	ŰL	220476.00000 565938.40000	19.35000	89344.50000	566938.40000	59.33000-
998	F5485	UL.	163782.20000	24.03000	78511.00000	163782.20000	54.65000-
999	F 5585	UL	163782.20000	24.04000	79607.40000	163782.20000	54. 64 000-
1000	F5685	UL,	346462.40000	21.11000	138119.00000	346462.40000	57.57000-
1001	F5785	UL	850407.70000	21.37000	7234 5. 60000	850407.70000	57.31000-
1002	F 5985	UL	69292. 50000	30.88000	47122.00000	69292.50000	47.80000-
1003	F51085	UL.	132285.60000	29.04000	51324.60000	132285.60000	49.64000-
1004	F51285	UL	157482.50000	32.65000	44766.80000	157482,90000	46. 03000-
1005	F51385	UL	201578. 10000	28.92000	52348.90000	201578.10000	49.76000-
1006	F51485	UL	50394.50000	34.60000	50377.00000	50394.50000	44.08000-
1007	F51585	UL.	62993.10000	30.80000	51530.00000	62993.10000	47.88000-
1008	F51685	UL	3332338.20000	4.01000	•	3332338.20000	74.67000-
1009	F51785	UL	264571.30000	53.28000	16337.00000	264571.30000	25.40000-
1010	P51885	UL	108562.70000	11.01000	97558.00000	108562.70000	67.67000-
1011	F6185	UL.	667727.50000	4.38000	•	667727.50000	74.30000-
1012	F6285	UL	125986. 30000	24.41000	77279.50000	125986+30000	54.27000-
	-						

	• COLUMN •	×	••••*****	•• [NPUT COST ••	. CUREN LINIT.	•• UPPEN LIMIT• •	• HEDULED CUSI •
1013	F6385	Ч С	125980.30000	24 .4 1000	76131e 70000	125986.30000	54+27000-
1014	F6485	3	302367•20000	21.0000	77990e00000	302367=20000	56.98000-
1015	F6585	ร	25197.30000	44ª 41000	25137a 80000	25197.30000	34.27000-
1016	F 6685	5	182680.20000	52.18000	18375,10000	182680.20000	26. 50000-
1017	F6785	ร่	1 76 38 0+ 80 00 0	520 1 8000	2218 4.00000	176380.60000	26.50000-
1018	F 6885	3	151183.60000	37.75000	46957400000	151183.60000	-00.93000-
1019	P6585	3	96800-0000	1.10 OL 000	96777.00000	96 500 • 000 0 0	67e67000-
1020	F7175	7	1624 7. 0000 0	32+30000	1624 7a 00000	522843e 20000	24.63000
1021	F7275	ł	9763. 50000	\$5 \$6000	97634500()0	88190.40000	37.93000
1022	F7375	Ŀ	32324.50000	24+ 70000	32324a 50010	132265.60000	17.03000
1023	F7475	ł	42119.60000	22+80000	42119+60000	170081.50000	15.13000
1024	F7575	Ļ	3564 7. 70000	24. 70000	3564 7ª 700()0	176380.80000	17.03000
1025	F7675	لہ لہ	1624 7e 30000	32+30000	1624 7a 30000	491 346. 60000	24.63000
1026	F7775	5	1209468-70000	24 31000	•	1209458.70000	5. 36000-
1027	F7875	5	1209468.70000	20 33000	•	1209468.70000	5.36000-
1028	F7975	Ļ	56225.40000	11.40000	56225.40000	151 183.60000	3. 73000
1029	F71075	Ļ	135240-80000	9.8000	1 35240° 80000	163782-20000	2000
1030	F71175	Ľ	157545.20000	8.40000	167545+20000	321265.10000	• 73000
1031	F71275	5	900602-20000	00000 P	2 35 779450000	900802 «20000	+88000-
1032	F71375	ŗ	47134.90000	10.20000	47134.90000	472448.70000	2.53000
1033	F7176	ر د	1831 9. 00000	33.92000	18319•00000	522643.20000	27.62000
1034	F7276	Ļ	11321.50000	47. 80000	11321450000	29396.80000	41 a 58000
1035	F7376	ي د	35627.40000	25.93000	35627.40000	132285.60000	1 9. 63000
1036	F7476	Ľ	43244.10000	23.94000	43244.10000	170081.50000	17.64000
1037	F7576	Ę	37322.80000	25.93000	37322+ 80000	176380.80000	19.63000
1038	F7676	ľ	17856 60000	33+92000	17856+60000	491346.60000	27e 62000
1039	F775	5	1209468.70000	2. 35000	•	1209468.70000	3+95000-
1040	F7876	5	1209463.70000	2.35000	•	1209458.70000	3.95000-
1041	F7976	۲ ۲	58477.6000	11+97000	58477+ 60000	151183.60000	5.67000
1042	F 71076	5	1.37119.70000	10.29000	137119.70000	163782.20000	3.99000
1043	F71176	5	171328-50000	8. 52000	171328.50000	321265-10000	2.52000
1044	F71276	Ļ	237455=00000	7.13000	237455.00000	900802° 20000	e 83000
1045	F71376	ر ر	4824 4. 30000	10.71000	48244+30000	472448.70000	4.41000
1046	F71476	3	951 196. 70000	5. 37000	156589. 70000	951196.70000	-00066-
1047	F71576	2	24584.00000	19.95000	24684.00000	167981.70000	13.65000
1048	F7177	ہے د	19 42 2. 00000	35e 6 1 000	19422+00000	522643+20000	28.12000
1049	F7377	Ŀ	42879.50000	27.23000	428794 50000	132285.40000	19.74000
1050	F7477	ł	45733.00000	25.14000	45733+00000	170081.50000	17.65000
1021	F7577	5	38 11 2. 20000	27. 23000	36112.20000	1 75380. 80000	19.74000
1052	F7677	3	18327.50000	35.61000	15327,50000	491346.60000	28.12000
1053	FTTT	3	1209 468.70000	2. 40000	•	1209468.70000	5.09000-
1054	F 7877	3	1209468e 70000	2.40000	•	1209468,70000	5. 09000-
1055	F7977	5	61,324. 00000	12.57000	63324+00000	151183.60000	5.08000
1036	F71077	3	14248 1. 60000	10.80000	1 4 2 4 8 1 4 6 0 0 0 0	163782.20000	3.31000
1057	F71177	Ŀ	175432+00000	9.26000	175432+00000	321265.10000	1.77000
1058	F71277	88	422410•90007	7. 49000	238538.90000	900802 • 20000	•
1059	F71377	Ľ	52557e 00000	11-24000	52557.00000	472448.70000	3. 75000
1060	F71477	3	951 196. 70000	5. 64000	156171.00000	951196.70000	1.85000-
1061	F71577	1	27787.00000	20.95000	27787.00000	251 572. 60000	13.46000
1062	P71977	5:	120000-00000	5+0000	117666.00000	120000-00000	2449000-
1003	F71/0	Ľ	22:55 7+ 80000	00085 915	222814 80000	522843+20000	28.60000

6.33000-2.67200 2.94000 2.94000 3.02000-13.280000-13.78000-30.27000 2.91000 2.91000 2.91000 1.75000-5.50000-5.50000-5.50000-5.50000-5.50000-5.50000-5.79000-2.91000 2.22000 19.25.92000 19.25.92000 28.92000 28.92000 28.75000 1.52000 28.75000 1.54000 1.54000 1.95000 3.64000 1.1.95000 5.71000 1.1.95000 19.8000 17.55000 19.80000 28.60000 28.50000 13.83000 16.38000 4.12000-4.12000-4.10000 36.56000 26.56000 6.38000 REDUCED COST 132285.6000 17031.5000 170381.5000 491346.6000 1209458.7000 151103.60000 151103.60000 153772.60000 900802.20000 911972.60000 91195.70000 132285.60000 132285.60000 132285.60000 132285.60000 132285.60000 1209458.70000 1209458.70000 1209458.70000 1209458.70000 1209458.70000 1209458.70000 1209458.70000 1209458.70000 1209458.70000 1209458.70000 1209458.70000 1209458.70000 1329155,70000 522043,20000 132285,60000 170081,50000 176380,80000 \$91346.6000
1209468.70000
1209468.70000
1209468.70000
163183.60000
163782.20000
321265.10000
321265.10000
672448.70000
651972.60000
251972.60000 .. UPPER LINI To 132285•60000 170081•50000 176380•80000 951196.70000 251972+60000 329155.70000 522843 20000 491346.60000 209468+70000 209468.70000 53629•00010 15221•70010 15225•10010 149326•80010 23842•60010 23842•60010 48419•60010 21819•40010 47320.50000 49454.00000 50521.000000 2341.6.60000 71322e10010 152309e80000 167100e00000 254587e30000 25696e00000 46874 60000 39523 10000 19203 00000 192492•70030 37410•00000 673477•00000 243499+00000 57222+60000 187489+10000 52004,90000 51397,40000 24870,00000 ..LOVER LIMIT. 241578.30000 67654 • 00000 1 • 754 2 • 30000 65654 0, 800-00 25119-000-00 13424°50000 64586a 000()0 43637+90000 17762 La 40010 183332+ 500:00 3554 1+ 20000 2734 7.00000 \$8634.50000 0 0 ٠ . . • ٠ .. INPUT COST.. 43,29000 33,10000 30,55000 33,10000 43,2000 2. 60000 2.60000 ... ACT IV ITY... 43 424 5000 16874 65000 19523 10000 19553 00000 19553 00000 12209469 70000 12209469 70000 12209469 70000 17521 70000 17521 70000 17521 70000 13.59155410 2000 251119 00000 17320000 1945400000 50521000000 2945400000 12094680 70000 12094680 70000 152309-80000 321265-10000 900602-20000 59695-00010 951195-70000 1209468.70000 21819.40000 147542+ 30000 1(3333.2+ 50000 67654.00000 57222+60000 71322.10000 27347.00000 52004. 90000 951194.70000 3.29155, 70000 +8634e5000 24870.00000 209468+70000 209465+70030 AV A •COLUMN. F71078 F71178 F71278 F71378 F71378 F71578 F71578 F7179 F7579 F7579 F7579 F7579 F7579 F7579 F7579 F71679 F7180 F7880 F7880 F7580 F7580 F7580 F7580 F7680 F71680 F71180 F71380 F71580 F71580 F71580 F71580 F71179 F71279 F71379 F71479 F71579 F 7378 F 7478 F 7478 F 7578 F 7578 F 7778 F 7778 F 7978 F7481 F7581 F7681 F7781 7881 1073 1065 1066 1067 1069 1069 1069 1070 NUNBER 1064 1076 0601 8601 9501 9501 1055 1055 1055 1055 1100 1102 1104 1105 1108 1109 1601 1101

56.46000-	321265.10000	213190.70000	13.03000	J21265, 10000	٤	F71104	1165
54.29000-	163762.20000	16364 7. 50000	15.20000	163782.20000	F	F71084	1164
-00019-15	151183.60000	82510.00000	17.68000	151163-60000	۶	F7980	1163
66.73000-	1209468.70000	•	2.74000	1209468.70000	F	F 7884	1162
66.73000-	1209468.70000	•	2.76000	1209468.70000	۶	F7784	1161
19.39000-	491346.60000	32519-20000	50 • 1 0000	491 34 6. 60000	۶	F 7684	1160
31 . 1 8000-	176380.80000	55666.80000	38.31000	176380.80000	۶	F7584	1159
34.13000-	170031-50000	58292.70000	35= 36000	170081-50000	۶	F7420	1158
31 - 18000-	132285-60000	57 38 1. 000 00	0001 E • BE	132285.60000	۶	F7 384	1157
19.30000-	522843.20000	33678.90000	50.10000	52284 3. 20000	۶	F7184	1156
39. 4 8000-	787414.50000	648111.00000	8.24000	787414-50000	۴	F71783	1155
39.48000-	1329155.70000	694738.10000	8.24000	1329155.70000	ç	F71603	1154
19.65000-	251 972 .60000	44756-80000	28.07000	251972.60000	۶	F71503	1123
40.17000-	951196.70000	222737.40000	7.53000	951 196. 70000	۶	F71483	1152
32.65000-	472448.70000	64328.00000	15.07000	472:44 Be 70000	ç	F71303	1151
37.69000-	900802.20000	291616.50000	10.03000	900802+20000	F	F71283	1150
35e31000-	321265-10000	201879.60000	12.41000	321265.10000	۶	F71183	1149
33624000-	163782.20000	163338.00000	14.40000	163782.20000	Ę	F71083	1148
30.88000-	151183.60000	79814.700:00	16.84000	151183.60000	۶	F7983	1147
45.02000-	1209468.70000	•	2.74000	1209468.70000	F	F7883	1146
45.02000-	1209468.70000	•	2+70000	1209468e70000	۴	F7783	1145
•	491 346 60000	28281.60000	47.72000	2028 1. 60000	F	F7683	A 1144
11.23000-	176360.50000	00000e08888	36-49000	176380 80000	Ê	F7583	1143
14=04000-	170081-50000	55533 , 60000	33, 63000	170081-50000	۶	F7483	1142
11.23000-	132285 .60000	54547.60000	36.49000	132285. 60000	۶	F7383	1141
•	522843.20000	32328, 50000	47.72000	65147.30009	59	F7183	1140
16-53000-	787414.50000	637269.00000	7.85000	787414.50000	۶	F71782	1139
16-53000-	1329155+70000	892489 . 40000	7.83000	1329155.70000	F	F71682	1138
2.35000	251 972+60000	42433+60000	26.73000	42433.60000	F	F71502	1137
17.19000-	951196.70000	211929.000130	7.10000	951 198. 70000	۶	F71482	1136
-000E0-01	472448.70000	63945.10000	14.35000	472448.70000	۶	F71382	1135
14e83000-	900502+20000	282039.60000	9 ; 53000	900802.20000	۶	F71202	1134
12.56000-	321265.10000	195554.00000	11.82000	321265+10000	۶	F71182	1133
10-59000-	163782.20000	1636460 80000	13.79000	1 63 782. 20000	۶	F71082	1132
8- 34 000-	151 103-60000	77971.00000	16.04000	1 51 183. 60000	F	F7982	1131
21.73000-	12094584 70000	•	2.69000	1209468.70000	Ę	F7882	0511
21.73000-	1209458.70000	•	2.65000	1209468.70000	۶	F7782	1129
21.06000	491346+60000	26175.30000	45.40000	26175.30000	٢	F7682	1128
10-37000	178380-80000	52520+ 600 () 0	34. 75000	52520 60000	F	F7582	1127
7. 69000	170051.50000	0()000081155	32.07000	53118.00000		F7482	1126
10-37000	132285-60000	52341.00000	34. 75000	52341.00000		F7382	1125
21.06000	522843.20000	28949.000()0	45a 40000	28949400000	F	F7102	1124
9.25000-	524 94 3+ 00000	522476, 80000	7-47000	5.24943.00000	F	F71781	1123
9-25000-	1329155-70000	684533-000()0	7.47000	1329155.70000	۶	F71681	1122
8. 74000	251 972. 60000	41311.70000	25+40000	41311.70000	F	F71581	1121
9.57000-	951 196 • 70000	20781 1. 00000	0008800	9:51 195. 700:00	F	F71481	1120
3-06000-	• 72 • • 8 • 70000	61007a00000	13+66000	47244 E. 70000	۶	F71381	1119
7-62000-	900802.20000	279997-00000	9+10000	9()0802.200()0	۶	F71281	9111
5-47000-	321265 . 10000	192233050000	1 1e 25000	321265 10000	۶	P71181	1117
3.59000-	163782.20000	163540.00000	13.1 1000	163782.20000	۶	F71081	1116
1.45000-	151183.60000	73764.20000	150 2 7 000	151183.60000	۶	F7981	1115
.REDUCED COST.	••UPPER LINITO	econtra contra	INPUT COST	••• ACTI VITY: ••	P.	. COLUNN.	NUMBER

•

•

.

NUMBER	• COLUMN.	AT	• d • d C 7 I V I T 1 • • •	GAINPUT COSTAR	LOWER LINET.	UPPER LIMIT.	.REDUCED COST.
1166	F71284	UL	900802020000	10.53000	295535,80000	900802.20000	58.96000-
1167	F71384	UL	472448.70000	15-82000	67589.30000	472448.70000	53.67000-
1168	F71484	UL	9511960 70000	7. 93000	237310.80000	951196.70000	61-56000-
1169	F71584	UL	251972.60000	29.47000	47191.20000	251972.60000	40.02000-
2170	F71684	UL.	13291550 70000	8= 65000	701199.00000	1329155.70000	60.84000-
1171	F71784	UL	7874140 50000	8.65000	653329, 50000	787414.50000	60.84000-
1172	F7165	UL	52281 3 20000	52.61000	37777.50000	522843.20000	26.07000-
1173	F7385	UL	132235+60000	40= 26000	61498,20000	132285.60000	38.42000-
1174	F 7485	UL	li 70031= 5000 0	37-16000	62323.80000	170081.50000	41. 52000-
1175	F7585	UL	176330 80000	40+26000	57749+40000	176380.80000	38.42000-
1176	F7685	UL	491346.60000	52.61000	33840.000000	491 346. 60000	26.07000-
1177	#7785	UL.	1209458 70000	2.81000	•	1209468.70000	75.87000-
1178	#78 85	UL	1209458+70000	2.81000	•	1209468.70000	75.B7000-
1179	F7985	LL	151133-60000	18.57000	85349.60000	151183.60000	60.11000-
1180	F71085	UL.	1637320 20000	15.96000	163116.70000	163782.20000	62.72000-
1181	F71185	UL	321255+10000	13-68000	224633.50000	321265.10000	65=00000-
1182	F71285	UL.	900802.20000	11-06000	301412.70000	900802-20000	67.62000-
1163	F71385	UL	472448.70400	16.61000	71744.40000	472448. 70000	62.07000-
1164	F71485	UL	951196.70300	8.33000	241248.90000	951196.70000	70.35000-
1185	F71585	UL	2519720 60000	30.95000	49322-10000	251 972+60000	47.73000-
1186	F71685	UL.	1.329155.70000	9.09000	723458.50000	1329155.70000	69.59000-
1187	F71785	SOL.	787414 50000	90000	667948=40000	787414+50000	69.59000-
1188	F71885	UL	692924.70000	2+81000	•	692924.70000	75.87000~
1189	F8175	LL	29205.30000	12.40000	29205.30000	62993.10000	4.73000
1190	F8275	LL	32314.70000	12-82000	32314.70000	62993,10000	5.15000
1191	F8375	CL.	71832-10000	11-54000	71832-10000	81891.10000	3.87000
1192	F8475	հե	107687.40000	11.11000	107687.40000	119687.00000	3.44000
1193	F8575	LL	171326.80900	10.09000	171326.80000	245673.30000	2.42000
1194	F8675	UL	1259863.20000	2. 71000		1259863.20000	4.96000-
1195	P8775	UL	182650.20000	20 41000	182679.80000	182680.20000	5.06000- 7.04000
1196 1197	F8176 F8276	EL.	32422.20000	13.34000 13.00000	32422•20000 33020•50000	62993,10000 62993,10000	7.50000
1197	F8276		33020. 50000	12-42000	72377.80000	81891.10000	6.12000
		LL	72377.80000	11.96000	109548+60000	119687.00000	5.66000
1199 1200	F8476 F8576	LL LL	109548e 60000 175447e 40000	10-86000	175447.40000	245673.30000	4.56000
1200	F8676		1259863.20000	2.02000	113441840000	1259863.20000	3.48000-
1202	P8776	UL	182680 20000	2.71000	1 52679.00000	182680.20000	3.59000-
1203	F 8177	LL	34519.10000	19-28000	34519+10000	62993.10000	11.79000
1204	F8277	LL	35110 60000	19.95000	35110.60000	62993.10000	12.46000
1205	F8377	LL	74998-00000	17.95000	74998.00000	81 891 . 10000	10.46000
1206	F 2477	LL	75338-40000	17-29000	75338.40000	119687.00000	9.80000
1207	F8577	LL	178455-80000	15. 49000	178455.80000	245673.30000	8.20000
1208	F 8677	UL	1259863.20000	2.93000	•	1259863.20000	4.56000-
1209	P8777	VL	182680-20000	2.81000	1 82679.60000	182680.20000	4.68000-
1210	F8178	LL	35897.20000	21.17000	35897.20000	62993.10000	12.39000
1211	F8278	LL	36323. 50000	21.90000	36323.50000	62993.10000	13.12000
1212	F8378	LL	75114.60000	19.71000	75114060000	81 691 . 10009	10.93000
1213	F 6478	ĒĽ	76819.90000	18.98000	76819.90000	119687.00000	10.20000
1214	F8578	LL	181440.00000	17.23000	181440.00000	245673+30000	8.45000
1215	F 8678	uL	1259863.20000	3.05000	•	1259853.20000	5. 730 00-
1216	P8778	UL.	102680.20000	2. 91 000	1 82679-80000	182680.20000	5.87000-
							_

•

• .

NUNDER $\begin{array}{c} 1 & 2 \\$ 1260 1261 1262 1262 1263 1264 1264 1265 1265 1210 1217 1220 F82385 F86385 F86485 F865 F86585 F86575 F86585 F86575 F865 F0602 F0602 F0602 F08102 F0602 F0705 F070 F8481 F8184 F8294 F8384 F8484 F8483 F8683 F8683 F8281 F8381 **TOTOLOGICAL** F8185 .COLUNN. F8179 AŦ 1 19687-0000 245673-36000 1229063-20000 122993-10000 31293-10000 31393-00000 1195673-00000 1195673-00000 1225673-20000 1225673-20000 122593-20000 122593-20000 122593-20000 122593-20000 122593-20000 122593-20000 122593-20000 122593-20000 122593-20000 122593-20000 12593-20000 197418.0000 1259653.20000 12259653.20000 1122680.20000 205673.30000 1125673.30000 1125673.30000 1125673.30000 1125683.20000 1125683.20000 1125683.20000 1125683.20000 1125683.20000 ...ACVIVETV. .. 182680. 37484.00000 38110.50000 75237.40000 77112.20000 119587.00000245573.30000 20000 20000 a. INPUT COST., 3.17000 3.01000 23.92000 24.75000 22.2.27000 28073000 4007000 3061000 3061000 8062000 8062000 23.25000 24-05000 24. 97000 18+29000 20-15000 22.48000 . LOWER LINIT. 182679-1000 52527-50000 51789-50000 81477-50000 81477-2000 83690-20000 201117-70000 182679,60000 48600,00000 47813,50000 81890,50000 80347,40000 80345,600000 182679.0000 41322.10000 42735.80000 78664.40000 79418.80000 187121.50000 182679.90000 43547.00000 44779.10000 80432.00000 81528.40000 1 82679.40000 42467.60000 43594.70000 79642.00000 80420.30000 1 90256.00000 1 82679.0000 39677.70000 41 322.10000 77553.30000 78119.90000 1 85272.60000 182679.10000 192427.50000 183543.00000 38110.50000 76257.40000 77112.20000 3741400000 ٠ • • • ٠ . • . . 119687.00000 245673.30000 1259863.20000 1825986.20000 189216.00000 189216.00000 182680.2000 62993.10000 8181.2993.10000 119687.00000 119687.00000 245673.30000 1259863.20000 182680.20000 1259863.20000 182680.20000 62933.10000 81891.10000 245673.10000 245673.20000 1259683.20000 182680.20000 182680.20000 182693.10000 62993.10000 81891.90000 119687.00000 245673.30000 1259863.20000 .. UPPER LIMIT. 182680=20000 62993=10000 62993=10000 81891=90000 182680.2000 62993.10000 61993.10000 119687.00000 1259863.20000 245673.30000 245673+30000 245673-30000 119687.00000 62993+10000 62993+10000 81 891 . 10000 62993-10000 62993.10000 •REDUCED COST. 13.51000 3.37000 3.37000 .59000 .33000 .33000 20.61000 21.07000 4.18000 $39 \cdot 33000^{-1}$ $38 \cdot 29000^{-1}$ $41 \cdot 41000^{-1}$ $42 \cdot 45000^{-1}$ $65 \cdot 63000^{-1}$ $65 \cdot 63000^{-1}$ $45 \cdot 65000^{-1}$ $48 \cdot 85000^{-1}$ $52 \cdot 61000^{-1}$ $52 \cdot 61000^{-1}$ $75 \cdot 61000^{-1}$ $75 \cdot 63000^{-1}$ $75 \cdot 63000^$ 22.11000-18.17000-21.13000-5.29000 5.99000 11.62000 9.12000 9.15000 7.17000 9.190000 9.53000 5.930000 5.930000 5.930000 5.930000 5.930000 5.930000 44.31000-44.01000-3.48000 1.15000 1.92000 4-25000

EXECUTOR. HPSX RELEASE 1 HOD LEVEL

æ

NUP	18ER	. COLUMN.	AT	• • • ACVIVITV• ••	0.0 INPUT COST. 4	SOLOVER LINITO	••UPPER LIHIT•	.REDUCED COST.
1	268	F 91 76	LL	•	9.20000	•	189216.00000	2.90000
1	269	F9276	LL	•	9020000	•	315360.00000	2.90000
1	270	F9177	LL	•	9.77000	•	189216.00000	2.28000
1	1271	F9277	LL	•	9.77000	•	315360.00000	2.28000
1	272	F9178	LL	•	10.80000	•	189216.00000	2.02000
1	273	F 9278		•	10.80000	•	315360.00000	2.02000
. 1	274	F9179	LL	•	11.50000	•	189216.00000	2.50000
1	275	F9279	LL	•	11.50000	•	315360.00000	2.50000
1	276	F9180	85	89536 20018	12. 30000	•	189216.00000	•
A 1	277	F9280	UL	315360.00000	12.30000	•	315360.00000	•
1	278	F9181	UL	1 8921 6. 00000	13.22000	•	189216.00000	3.50000-
1	279	F9281	UL	31 5360. 00000	13022000	•	315360.00000	3.50000-
1	280	F9182	UL.	189216.00000	14-14000	•	189216.00000	10.24000-
1	281	F9282	UL	315360-00000	14.14000	•	315360.00000	10.24000-
1	282	F9183	UL	189216.00000	15.06009	•	189216.00000	32.66000-
	283	F 9283	ŪL	31 33 30. 00000	15.06000	•	315360.00000	32.66000-
1	284	F9184	UL	1 8721 6. 00000	16.21000	•	189216.00000	53.28000-
1	285	F9284	UL	315360.00000	16.21000	•	315360.00000	53e 28000-
1	286	F9185	UL	1092140 00000	17.25000	•	189216.00000	61.43000-
1	287	F9283	UL.	315360.00000	17.25000	•	315360.00000	61.43000-

XVII. APPENDIX G: FUEL CONSUMPTION AND COST NOMOGRAPHS

Heat values of fuels consumed by the utility companies vary over a broad range according to Weekly Energy Reports (143). For convenient reference, some nomographs have been developed so that one can calculate the amount of fuel consumed annually by one installed kW of capacity of generating units with various heat rates at plant factors of 0.80, 0.85, and 1.00. If the values obtained from the nomographs with a 1.00 plant factor are multiplied by any plant factor, the corresponding amount of fuel consumption per kW per year is obtained.

Figure G.1, Figure G.2, and Figure G.3 indicate the coal consumption of generating units with various heat rates in tons per kW of capacity per year for various coal heat values at various plant factors.

Figure G.4, Figure G.5, and Figure G.6 give the oil consumption of generating units with various heat rates in barrels per kW of capacity per year for various oil heat values at various plant factors.

Figure G.7, Figure G.8, and Figure G.9 show the natural gas consumption of generating units with various heat rates in cubic feet per kW of capacity per year for various natural gas heat values at various plant factors.

The following formulas are used to calculate the amount of fuel consumed annually by one installed kW of capacity of generating units at an assumed plant factor:

For coal-burning units:

tons/kW/year = (Heat rate of the unit Btu/kWh) x 8760 x (Plant Factor) (Heat value of coal Btu/ton) x (2000 lb/ton)

For oil-burning units:

For gas-burning units:

Figure G.10 gives fuel costs in mills per kWh when fuel costs in cents per MBtu and the heat rate of the generating units in Btu per kWh are known.

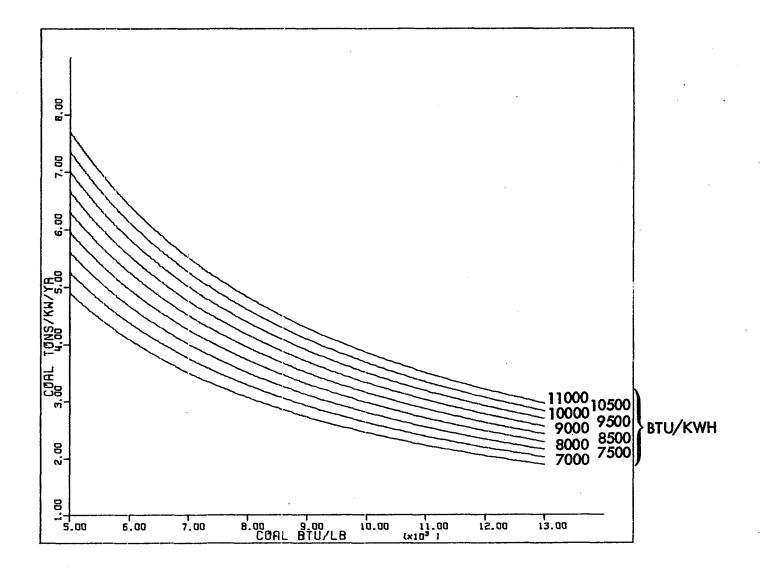


Figure G.1. Coal consumption of generating units with various heat rates for various coal heat values at a plant factor of 0.80 in tons/kW/year

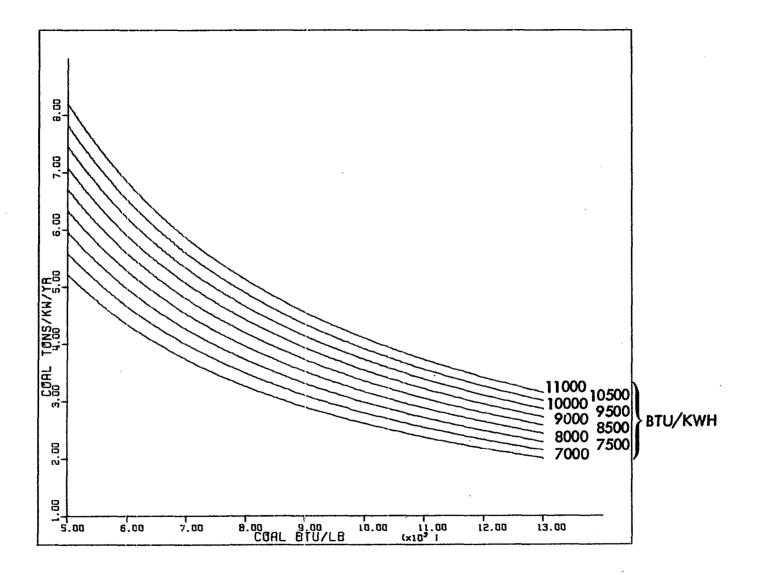


Figure G.2. Coal consumption of generating units with various heat rates for various coal heat values at a plant factor of 0.85 in tons/kW/year

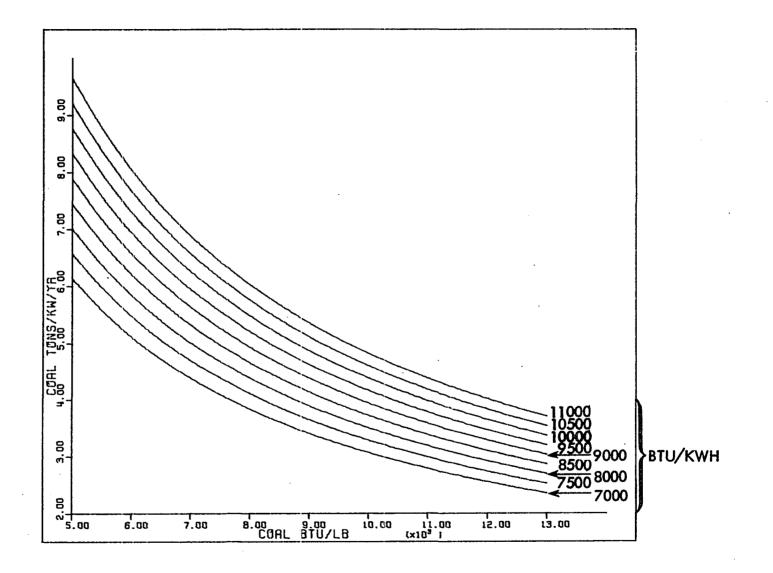


Figure G.3. Coal consumption of generating units with various heat rates for various coal heat values at a plant factor of 1.00 in tons/kW/year

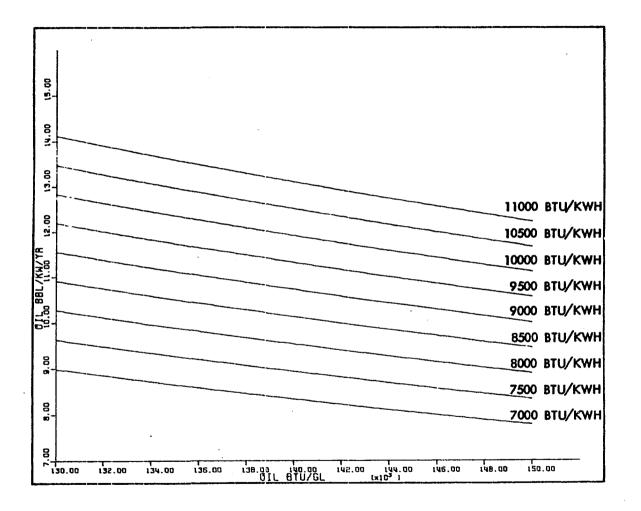


Figure G.4. Oil consumption of generating units with various heat rates for various oil heat values at a plant factor of 0.80 in barrels/kW/year

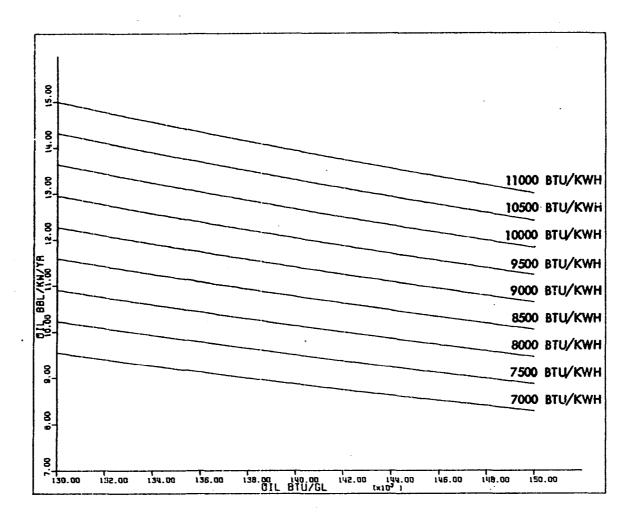


Figure G.5. Oil consumption of generating units with various heat rates for various oil heat values at a plant factor of 0.85 in barrels/kW/year

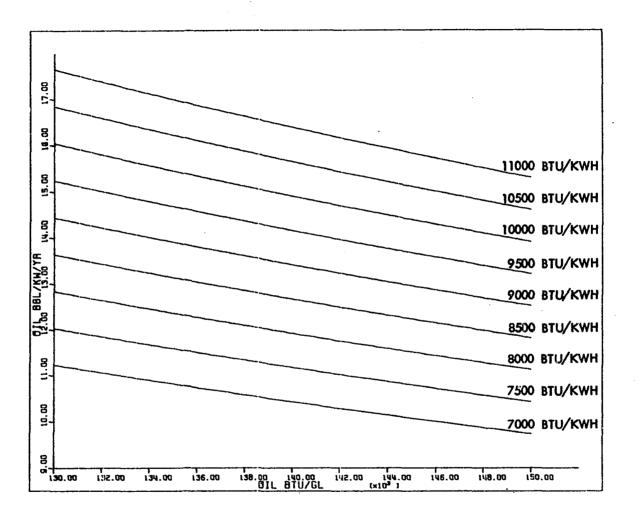


Figure G.6. Oil consumption of generating units with various heat rates for various oil heat values at a plant factor of 1.00 in barrels/kW/year

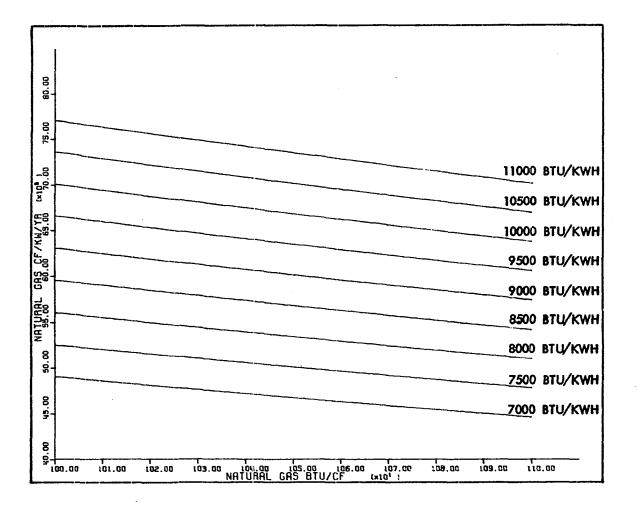


Figure G.7. Natural gas consumption of generating units with various heat rates for various natural gas heat values at a plant factor of 0.80 in cf/kW/year

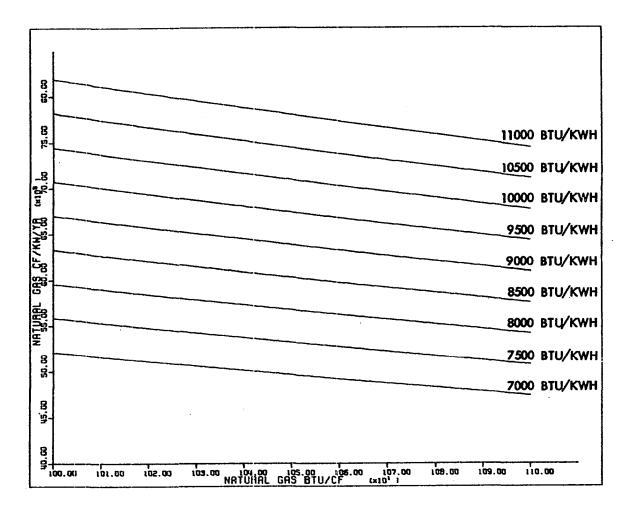


Figure G.8. Natural gas consumption of generating units with various heat rates for various natural gas heat values at a plant factor of 0.85 in cf/kW/year

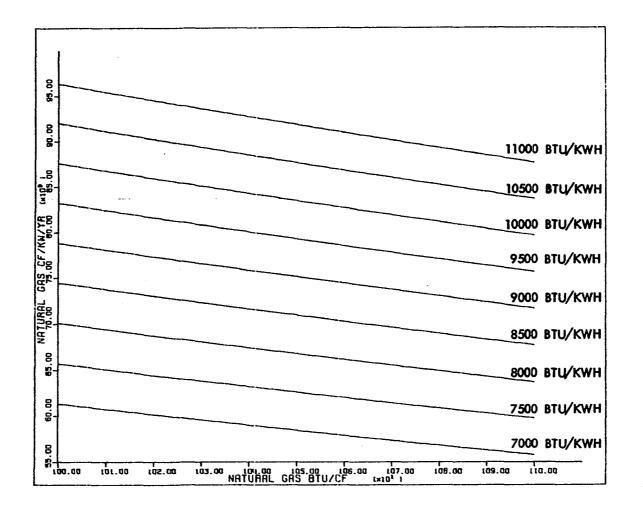


Figure G.9. Natural gas consumption of generating units with various heat rates for various natural gas heat values at a plant factor of 1.00 in cf/kW/year

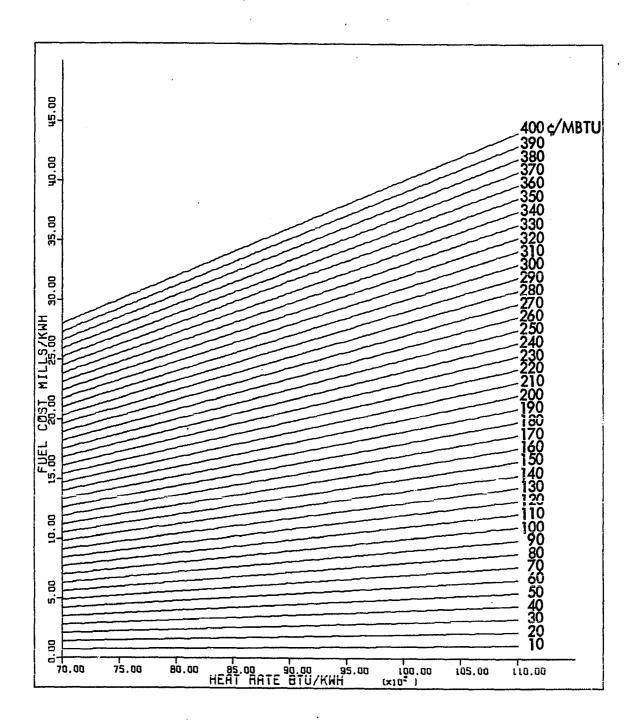


Figure G.10. Fuel costs in mills/kWh of generating units with various heat rates for various fuel costs in cents/MBtu

XVIII. APPENDIX H: LINEAR PROGRAMMING COMPUTATIONS USING MPSX SYSTEM

In Chapter V, we have explained the FAM which uses a Linear Programming optimization technique. There are many linear programming solution procedures available for the various makes and models of computers. The majority of these programs have been well-tested and are readily available for use. A major drawback that existed in the past was that the control language or the control commands to properly execute linear program solutions were difficult to learn and difficult to use properly (139). Although most linear programming computer programs have much in common, each has unique characteristics.

In this Appendix, we attempt to indicate and describe some of the options and procedures of MPSX (which is used in our energy model); and how to set up the input data and the control program to convey our solution strategy to MPSX.

The control program is composed of a set of procedures or commands for solving a linear programming problem in an orderly fashion (140).

A. Data Format

The input format of MPSX consists of two types of cards: (1) indicator cards and (2) data cards. The indicator cards specify the type of data that is to follow. Some of these are NAME, ROWS, COLUMNS, RHS, RANGES, BOUNDS, AND ENDATA, as shown in Figure H.1.

Each card is always punched so that its first character is in column 1. Each indicator card specifies a certain command and identifies a section or block data to the MPSX system. Command cards are placed

	F	1	•	Field 2	Field 3		-Field	L 4-	-Fie	eld 5 -	-Fie	ld 6+	
1	2	3		5 12	15	22	25	36_	40	47	50	61	
N	_	M	E		Data Set Na	ame							
*	┝╍╴					COM	MENTS	CAR	DS —				
R	O N G L E	W	S	Row Name									
С		L	Ū	M N S Column Name	Row Name 1		Value	. 1	Row	Name 2	Valu	ue 2	
R	H	S		RHS Name	Row Name 1		Value	. 1	Row	Name 2	Valu	ue 2	
R	A	N	G	E S Range Name	Row Name 1		Value	. 1	Row	Name 2	Valu	1e 2	
B	L U F M P F	O P X I L R		D S Bound Row Name	Column Name	2	Val	.ue					
E	N	D	A.	Ϋ́A									

Figure H.1. Input format

.

•

anywhere in the data deck by putting an asterisk (*) in column 1.

B. Data Preparation

A NAME card is always the first card in the input deck and an ENDATA is always the last card used to terminate the data deck. The NAME card contains a name (e.g., MODIPL 11, or MODPOOL) in field 3, which cannot have more than 8 characters, and is used to identify the data set to the MPSX.

The second data card contains the letters ROWS in the first four columns. The purpose of the row section is to define the type of row constraints that have been incorporated in the model. There are four indicators used to identify the type of row in the model followed by some name. The row type is specified according to the following code:

> N = Objective function or nonrestrictive row G = Minimum restraint (greater than or equal to) L = Maximum restraint (less than or equal to) E = Equality

The objective function or functions are labeled C or C2, C3, etc. in columns 5-12 of field 2. The other rows can have any name of not more than 8 characters entered in columns 5-12. The traditional R1, R2, ..., RX labeling system is used throughout in this study.

The column section specifies the restriction coefficients and the names to be labeled with each structural variable. The word COLUMNS is entered in the first 7 columns. Since the MPSX system will originally treat all coefficients in our model as zeros, we need only to declare nonzero entries in the data deck. It should be noted that the matrix elements in the column section are specified by column. Hence, once a column name is specified, all other nonzero entries in that column must be declared before another column is defined. In order to do this, one must first enter the column name in columns 5-12 of field 3, and the coefficient values in columns 25-36 of field 4.

The resource vectors are specified in the right-hand side section. The input format is basically the same as defined in the column section, but a unique RHS name is declared for each resource vector defined.

The range section can be used to condense the input data. It has the effect of making more useful the interpretation of the shadow prices by providing an estimate of the range over which a shadow price is relevant. A RANGE card is added to the control deck immediately following the SOLUTION card.

The bound section is used to place bounds on the capacity of generating units. When bounds are not declared they are automatically set at zero and positive infinity. The bounds section of the data deck is preceded by the letters BOUNDS in columns 1-6. Because it is possible to obtain multiple solutions in the same computer run based upon different sets of bounds, names are given to the bound rows, e.g., BND1, BND2, ..., BNDX, to distinguish different bound sets.

Field 1 specifies the type of bound to be imposed on an activity. The following indicators are used:

> UP = Upper bound or maximum LO = Lower bound or minimum

FX = Fixed bound or minimum
MI = Lower bound of negative infinity
PL = Upper bound of positive infinity
FR = Free variable

C. Control Program

The control program is a set of procedures specified by the user to define the strategy to be used in solving the model. Table H.1 gives an example of a general control program used in our study.

The first command in the control program is PROGRAM which indicates to the MPSX system that the program is to follow and includes a listing of all coding errors if any are desired. If any errors are found in the program, the system will terminate before the input data is read. The second command is INITIALZ which establishes initial settings of all tolerances at their standard values (139).

The next two statements move the name of the data, MODEILP, into the MPSX cell XDATA and move the problem file name, PBFILE, into the cell XPBNAME. These two cells must be defined before such procedures as CONVERT and SETUP can be indicated in the control program (140). MVADR(XMAJERR,UNB) puts in the location XMAJERR the address of the first member of UNB. MVADR(XDONFS,NOF) puts in the location of XDONFS the address of the first member of UNB.

The CONVERT statement instructs the MPSX system to check the input data for proper specifications and to convert the data into internal representation onto the PROBFILE device with a problem name of PBFILE.

The next instruction SETUP('MIN', 'BOUNDS', 'BND1') will allocate

C. С C TABLE H. 1. A GENARAL CONTROL PROGRAM. С C........... PROGRAM INETIALZ MOVE(XDATA: MODE ILP .) MOVE (XPENAME, * PBF ILE*) MVADR (XMAJERR, UNB) MVACE (X CONFS, NOF) CCAVERT SETUP('MIN', BOUNDS', BND1') MOVE (XRHS ." E.) MGVE(X0BJ.ºC*) PEIMAL. PICTURE SOLUTION . EXIT TRACE NOF LNB EX IT PEND

/*

memory space within the computer and add appropriate slack variables. The added parameter 'MIN' specifies that the problem is to be minimized. The parameters 'BOUNDS' and 'BND1' imply that in the bound section the vector BND1 is to be used in solving the problem. If these parameters are omitted, the solution given will be obtained without these restrictions. Since there may exist many objective functions (C's) or resource vectors (B's) in the input deck, the following two instructions specify which vectors are relevant. In this example, the resource vector, B, is moved into the MPSX XRHS cell and the objective function name, C, is moved into the cell XOBJ.

PRIMAL instructs MPSX to apply a variant of the simplex algorithm to solve the problem. PICTURE creates a pictorial representation of the specified portion of the current matrix. All numbers other than ± 1 are converted to alphabetic codes that indicate magnitude.

In order to get the output for the solution the command SOLUTION is used. After the solution the commands EXIT and PEND are given. They terminate the program and turn over control to the IBM system. TRACE creates a report of those vectors that may be related to the cause of an infeasibility.

Table H.2 gives a typical set of job control language cards which instruct the computer where to find the MPSX program. The control program follows the //MPSCOMP.SYSIN DD * card and the input data follows the //MPSEXEC.SYSIN DD * card.

D. Multiple C Rows

The convention of labeling the original objective function C and

subsequent functions C2, C3, ..., CX has been followed in preparing control cards. Each C row contained in the model is labeled in the ROWS section in the data deck. All C rows are preceded by the letter N in the field 1. The name of the row (e.g., C, C2, C3, etc.) appears in field 2, left-justified.

In entering the coefficients C row data are treated the same as data from other rows. The column name is given in field 3, and the coefficient in field 4. A second row, for example, C2, may be named in field 5 and its coefficient in field 6. A control program for the multiple C rows is shown in Table H.3.

E. Combination of Multiple C Rows and Multiple B Rows

The control program can be extended to include any number of B columns by reproducing (with the appropriate B column label for each B column intended) the control cards from MOVE through SOLUTION. The B column names and coefficients are always entered on the data sheet under the RHS section.

The names given B columns on the data sheet correspond exactly to those contained on the control cards. Because of the convention of naming B columns B, B2, B3, ..., BX has been followed in preparing the control program, the labeling of the B columns in the RHS section of the data deck follows the same system.

Any combination of B columns and C rows may be included in one model and a single computer run. Table H.4 shows a control program for the combination of multiple C rows and multiple B columns and bounds.

С С C TABLE H. 3. A CONTROL PROGRAM FOR THE MULTIPLE C'S. С //C269TG J08 I4375, GONEN //*MAIN CRG=ANYLCCAL //STEP1 E XEC MPSX //NFSCCMF.SYSIN CD * PRCGSAN INITIAL Z MOVE(XDATA, "MCDIPLII") MOVE (XPBNAME, PBFILE) MVADR(XMAJERR,UNB) MVACE (XCONES, NOF) CCNVERT SETUP ("MIN", "BOUNCS ", "BND1") MOVE(XRHS, "B") MCVE(X08J,*C*) PICTURE PRIMAL SAVE SOLUTION MOVE (XOBJ, +C2+) PICTURE RESTORE PR IMAL SAVE SCLUTION NOVE(XOBJ, *C3*) PICTURE RESTORE PRIMAL SCLUTION EXIT NCF TRACE UNB EXIT

301 //MPSEKEC.SYSIN DD # FE ND * \

C........ С C TAELE HA4A A CENTREL PROGRAM FOR THE MULTIPLE C'S AND MULTIPLE B'S C AND BOUNDSO С C.......... //C269TG J08 14375, GONEN //STEP1 EXEC MPSX, TIME MPSEXEC=1 //#MAIN LINES=50 //MPSCOMP.SYSIN DD # PREGRAM INTTIALZ MOVE (XDAT A. "MODIPL11") MOVE (XPENAME, PBFILE) MVADR(XMAJERR,UNB) MVADR (X DONES . NCF) CONVERT SETUP ('MIN', 'BOUNDS', 'BND1') MOVE(XRHS, *B*) NOVE(XOBJ. .C.) FRIMAL SAVE SELUTION NCVE(XRHS, "E2") RESTORE PRIMAL SAVE SOLUTION MOVE(XRES, 83.) RESTORE PRIMAL SAVE SOLUTION MOVE(XRHS, "84") RESTORE PRIMAL SAVE

SOLUTION MOVE (XRHS . . ES.) RESTORE PRIMAL SAVE SOLUTION MCVE(XRHS. +86 +) RESTORE PRIMAL SAVE SCLUTION MOVE(XRHS, B) MCVE(XOEJ, C2+) RESTORE PRIMAL SAVE SOLUTION MOVE (XRHS, 1821) RESTCRE PRIMAL SAVE SCLUTION MOVE(XRHS, 'B3') RESTORE FRINAL SAVE SCLUT ION MCVE(XRHS . * E4 *) RESTORE PRIMAL SAVE SCLUTION MOVE(XR+S.+85+) RESTORE PRIMAL SAVE SCLUTION

MOVE(XRHS, B61) RESTORE PRIMAL SAVE SCLUTICN MOVE(XRHS, *B*) NEVE(XDEJ, C31) RESTORE PR IMAL SAVE SCLUTION MOVE(XRHS, B21) RESTORE PRIMAL SAVE SOLUTION MOVE(XRHS. 831) RESTORE PRIMAL SAVE SCLUTICN MOVE(XRHS, 84*) RESTORE PRINAL .SAVE SCLUT ION NCVE(XRHS, 1651) RESTORE PRIMAL SAVE SCLUTION MOVE (XRHS, +86+) RESTORE PRIMAL SAVE SOLUTION CHECK

	EXIT	
NCF	TRACE	
UNE	EXIT	
	PENC	
/*		

• .

.

.

.

.

.

//MPSEXEC.SYSIN DD *

/*

.

.

.

.....

F. Other Commands

In order to find out that the proposed model is defined and coded correctly, the command PICTURE can be used. This command can appear anywhere after the CONVERT statement. PICTURE creates a picture of the magnitude of the nonzero coefficients which are indicated by alphabetic code. This command is useful in finding errors before a problem is executed.

If one wants to solve one problem and then solve a similar problem without starting from step one of the simplex algorithm, the only instructions needed are SAVE and RESTORE. The SAVE procedure will save the optimal basis and is usually placed in the control program after the PRIMAL command. The RESTORE instruction will bring back into the solution the vectors saved using the SAVE command. The RESTORE statement is placed after the second problem is specified and before PRIMAL is called.

G. Interpretation of Computer Output

Out main interest centers on sections 1 and 2 of the computer output. Section 1 gives the value of the program in the C row of the column 1abeled ACTIVITY. The remaining entries in this column indicate how much of the original B column value is used in the production process.

The shadow prices for the disposal or slack activities are printed in the column labeled DUAL ACTIVITY. The C row value which is shown in this column should be ignored. The remaining values specify the change in the value of the program which would result from one less unit of restraint (or resource) in the original B column entry.

Section 2 provides information on the real activities in the solution.

Activity levels are printed out under a column labeled ACTIVITY.

The column INPUT COST only repeats the net prices assigned in the original model. Hence they have no significance in interpreting the output report except as a means of checking to see that they correspond to the values originally intended.

The lower and upper limit columns will contain meaningful entries only when the original model includes provisions for bounding the activities. In the latter case any bounds imposed are printed out as a reminder.

For the purpose of illustration, a computer output report of the company 4 (ISP) is presented in the following pages. In this output report, the level of activities appears in MWh in order to construct the model more easily.

EXECUTOR: MPSX RELEASE 1 MOD LEVEL 5

CONVERT MODISP TO PBFILE

TIME = 0.00

1- ROWS SECTIONS

O MINOR ERROR(S) - O MAJOR ERROR(S).

2- CCLUMNS SECTION.

0 MINOR ERROR(S) - 0 MAJOR ERROR(S).

3- FHS'S SECTION.

8

C MINOR ERROR(S) - O MAJCR ERROR(S).

S- BOUNDS SECTION.

BNC1

0 MINCR ERRCR(S) - 0 MAJCR ERROR(S).

PROBLEM STATISTICS

23 LF ROWS. 243 VARIABLES. 681 LP ELEMENTS. DENSITY = 12.18

THESE STATISTICS CONTAIN ONE SLACK VARIABLE FOR EACH ROW

0 MINCR ERROPS, 0 MAJOR ERRORS.

This page of the computer output gives a summary of the MPSX data to indicate whether there is an error in rows, columns, right hand sides or bounds sections, and, if there is, in which section the errors are. It also gives information about the statistics of the problem, e.g., the number of LP rows, variables, and LP elements.

EXECUTOR. HPSX RELEASE 1 HOD LEVEL 5

SETUP PEFILE

TIME = 0.03

MIN BCUNDS = ENC1 SCALE

MATRIXI ASSIGNED TO MATRIXI

ETA1 ASSIGNED TO ETA1

SCRATCH1 ASSIGNED TO SCRATCH1 SCRATCH2 ASSIGNED TO SCRATCH2

MAXINUM FRICING NOT REQUIRED - MAXIMUM POSSIBLE 7

NO CYCLING

PO	DLS	NUMBER	SIZE	CORE
H.REG-	EITS MAP			13€
BOUND	VECTOR			20.6
WORK	REGICNS	9	278	1872
MATRIX	EUFFERS	3	7152	21456
ETA	BUFFERS	3	3216	964 E

		TOTAL	NORMAL	•FREE •	FI XED	BOUNDED
ROWS	(LOG+ VAR+)	23	11	1	11	0
COLUMNS	(STROVARO)	220	0	Û	0	220

681 ELEMENTS - DENSITY = 12.18 -

only give information about how the space in the computer memory should be allocated.

3 MATPIX RECORDS (WITHOUT PHS'S)

Basically the commands on this page

are just internal commands. They are not

necessarily meaningful to the user. They

309

S.,

PR	IMAL	OBJ	08J = C		RHS = B	
	ME = CALE =	0•04 M	I NS.	PRICI	NG 7	
	ITER	NUMBER	VECTOR	VECTOR	REDUCED	SUM
•	NUMBER	INFEAS	OUT	IN	CCST	INFEAS
M	1	15	18	141	2.00000	+ 44E+07
	2		20	181	5.00000	844E+07
	3		21	5 01	5.00000	+ 44E+07
	4		13	30	2.00000	044E+07
	5		19	1 61	5.00000	044E+C7
M	6	10	?	18	-00000-	• 38E+07
	7		8	19	1.00000-	o33E+07
	8		Ş	20	8.0000-	@30E+07
	9		10	21	1 .00000-	a 29E +07
	10		81	81	1.00000	020E+07
	11		49	49	1+00000	019E+07
	12		30	13	1.00000-	o18E+07
M	13	6	5	101	1.00000	942165

The optimization iteration logs of the program are given on this page for the program which has the (C) objective function, and the (B) right hand side.

EXECUTOR. MPSX RELEASE 1 HOD LEVEL 5

	ITER NUMBER	NUMBER INFEAS	VECTOR CUT	VÉCTOR In	RED UCE D C OST	SUM INFEAS
	14		E	1 21	1.00000	212634.
	15		3	28	1.00000	76896.3
	16		11	221	1.00000	71912.0
	17		12	241	1.00000	68896.6
M	19	1	3	51	1.00000	31050.0
	19		76	76	1.00000	12310.3
¥	20	c	.4	75	1.00000	٠
1	FEASIBLE	SOLUTION	•			

PRIMAL DEJ = C RHS = B

TIME =	0+05 MINS+	PRICING	7
SCALE =	1 . OCCC C		

	ITER	NUMBER	VECTOR	VECTOR	REDUCED	FUNCTION
	NUMBER	NONOPT	OUT	IN	CCST	VALUE
M	21	193	183	183	•84733	•13E+10
	22		123	123	84736	•13E+10
	23		103	103	•84861	13E+10
	24		83	83	•85C25	•13E+10
	25		221	242	.86370	•13E+10
	26		241	243	.86374	•13E +10
M	27	149	197	197	84015	•13E+10
	28		177	177	.84012	•13E +10
	29		137	137	.84019	•13E+10
	30		117	117	• 8401 7	•13E+10
	31		97	97	.84192	•13E+10
	32		163	163	• 8472 9	•13E+1C
	33		143	143	84726	•13E+10
M	34	142	157	157	•84008	•13E+10
	35		184	1 84	•78823	•13E+10
	36		124	124	•78826	•13E+10
	37		104	1 04	•78829	•13E+10
	38		84	84	•79059	•13E+10
	39		75	63	•81090	•13E+10

Basically this page of the computer output shows whether the solution is a feasible solution. This and the following pages continue to show the optimization iteration logs.

7				R,				X
0, 0) 4 (4)	57 57	50 50	4 8 7	4 4 6 (j	a a u	12	Å ;	•
112				119				124
1 80 1 20	70 70	138 118	170 150	4 G 4 G	201	и м	144	164
1 80 1 20	54 64	138 118	178 158	81 77	198	96	144	164
•76542 •76550	•78453 •79158			1•55101- •84204	•78108	•78350	-	•78821
•13E+10 •13E+1¢	•13E+10 •13E+10	**	。13日+10 。13〒+10	+13E+10	13E+1	013E+10	1 3E	13E+3

I	X	τι	K
88 83 83	1	2 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1767 NUWERR 55 56 56
JE JE	ርዓ	1C 3	NUMBER NONOPT
161 30	20 11 12 12 12 12 12 12 12 12 12 12 12 12	NH 4 G G G G G G G G G G G G G G G G G G	ecuto دوران 10 10 10
30 109 152 09	30 F 10 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1		70
• 73068 • 73102 • 72644 • 54308	•73410 •73427 •753C5 •75314 •75315 •73123 •72934		RELEASE 1 REDLCED COST •76805 •76909 •76909 •77203
• 11 m + 1 • 11 m + 1 m + 1	• 12E+10 • 12E+10 • 12E+10 • 12E+10 • 12E+10 • 12E+10 • 12E+10	2 2 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4	NOD LEVEL FUNCTION VALUE 13E+10 13E+10 13E+10 12E+10

M D G X RELEASE MOD LEVEL 5

EIE

	84		39	39	•49651	•11E+10
	£5		25	25	• 5231 5	₀11E+10
	86		26	26	• 3 3 5 6 9	•11E+10
	87		40	40	.31333	•11 E+1C
	88		61	66	•61212	+11E+10
	89		101	86	6 2914	•11E+1C
м	50	7	41	41	.26429	•11E+10
	91		76	76	•44171-	•11E+10
	52		2 e	42	.26429	•11E+10
	93		45	60	●1 0779=	• 11E+1C
×	G4	1	59	59	06677	•11E+10
DP	TINAL	SOLUTION				

It is shown on this page whether or not there is an optimum solution. The last iteration number, which is number 94 in this example, is the number of Gauss-Jordan elimination tables that it took to get the optimum solution. EXECUTOR. NPSX RELEASE 1 NOD LEVEL 5

SOLUTION (OPTIMAL)

TIME = 0.06 MINSO ITERATION NUMBER = 94

NAME	•••ACTIVITY•••	DEFINED AS
FUNCTIONAL	- 11 20593495.63	c
RESTRAINTS		8
BCUNDS		BND 1

Shown on this page are the optimum solution, the value of the (C) objective function, the (B) right hand side, the (BNDl) bounds, the iteration number and the time that it took to solve the problem. Basically, this page gives a summary of the input data of the program.

EXECUTOR. MPSX RELEASE & MOD LEVEL 5

SECTION 1 - ROWS

NUMBER	• • • ROX• •	AT	ACT IVITY	SLACK ACTIVITY	LOWER LIMIT.	UPPER LIMIT.	DUAL ACTIVITY
1	c	8\$	1120593495063	1120593495.63-	NONE	NONE	1.00000
2	R1	EQ	31 7800 0.00000	Э	3178000 . 00000	31 78000.00000	29.40000-
3	P 2	EQ	33 68995, 99999	9	3368999 0 99999	3368999.999995	31+45000-
4	R3	EQ	3571000.00000	•	3571000.00000	3571000.00000	24.76000-
5	RA	EQ	37 84 99 9• 999 99	•	37849990999999	3784999.99999	26.39000-
. 6	R5	EQ	4012995.99998	•	4012999.99998	4012999.99998	32.90000-
7	R6	EQ	425299 9 099998	0	4252999 , 99958	4252999.99998	35.83000-
8	R7	EQ	450800 C. 00000	•	45 38000.00000	4508000.00000	38.33000-
9	R8	EQ	4778999 , 99999	•	4778999, 99999	4778999.99999	44+67000-
10	R 9	ΞQ	50 64 99 9e 9999 9	9	50649994999999	5064999.99999	53. 90000-
11	R 10	EQ	53 68 99 5 . 99998	Ð	5368999•99998	5368999•99998	92.66000-
12	R11	EG	56 91 999 <mark>6 99999</mark>	9	5691999,99999	5691 999. 99999	99+1500C-
13	R12	85	31 78000• 00000	4 504 05• 79997	NONE	3628495.79996	•
14	R13	85	33 68 99 9 . 99 95 9	259405 . 80000	NONE	3628405.79998	•
15	R14	85	35 71 00 C+ 00030	1 6952 27 . 89998	NONE	5266227 . 89997	•
16	R15	85	378499 5, 999 99	1481227. 89999	NONE	5266227.89998	•
17	R16	BS	4012999 . 99998	1253227,90001	NONE	5266227.89995	•
18	R17	8 S	42 52 59 5 • 99998	1013227.89999	NONE	5266227.89997	•
19	R18	85	45 08000.00000	758227o 89998	NONE	5266227.89998	•
20	R19	85	47' 7 899 9 • 99999	487227.89999	NONE	5266227.89997	•
21	R 20	85	5064995.999999	201227e 89998	NONE	5266227.89998	•
22	R21	85	52 6622 7 0 8999 7	•	NONE	5266227.89997	•
23	R22	B S	5265227.89997	•	NONE	5266227.89997	•

A summary of the column section. The optimal solution can be read under the activity column.

EXECUTOR. MPSK RELEASE 1 MOD LEVEL 5

SECTICN 2 - COLUMNS

•REDUCED COST•	17-08000-	15.96000	3+1 6000	21.56000-	7.7000-	16.53000-	22.224000-	4.20000-	1 9. 61 000-	-00021-12	3 8 8 0 0 0 -	1.47000-	19-68000-	20.82000-	18.48000-	13.56000	2=10001	•	•	18.27000-	1 7 . 0 EC O C	3.39000	23.05000-	-000 18 °B	17.68000-	23. 78000-	4 4 4 9 0 0 0 -	20.97000-	23+24000-	4.12000-	1.57000-	21 •0500C-	22.27000-	19.77000-
••UPPER LIWIT•	29606 • 80000	37795.90000	52284 • 30000	116537.30000	1385849 • 50000	94489 . 70000	188979.50000	220476.10000	75591.80000	75591 .80000	529142.50000	110238.00000	67432.70000	212916.90000	34646 • 2060C	66142 . 80000	56693 a60000	139844 . 80000	134175 ₈ 40000	29606.90000	37795. 90000	52284 .30000	116537.30000	1385849+50000	94499.70000	188979.50000	220476.1090C	75591 . 90000	75591 • 80000	529142+50000	110238.00000	67402 • 70000	212916=90000	34646 •20000
0. LOWER LIMIT.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	٠	e
. INPUT COST.	12• 32000	45.36000	32.56000	7.84000	21 - 63000	12.87900	1-1 6000	25. 2000	00000	7.67000	25.54000	27.93000	9º 72000	8.58000	1.0.92000	42°96000	11 - 50000	2 9 . 40000	219.40000	13. 18000	418°530C0	34° 84000	6ª 39000	23a14000	13.77900	7°67000	26a 96000	1 0°4 8000	8+21 300	274 33000	29088000	100 4 0300	5e 1 3000	11.68000
•• •ACTEVITV• ••	29606.8000	•	•	1 16537 . 30000	ŝ	46	v	20	755	75591. 800C 0	52914205000	102	57	· •	34646° 2000 P	•	•	•	36531.20002	29606•8000	•	•	116537.3000		4	1 88979.50000	220476.19090	3	75591 . 89000	529142•50000	110238-00000	674G20 70009	212916°64000	34 54 5. 20000
A T	۲ د	-	L L	۲ כ	5	C C	٦	ل	5	3	С С	3	۲ ۲	Ъ	с С	Ľ	Ļ	L L	8 8 8	ร	ر ر	Ļ	3	L C	5	٦	5	Ч	ر د	ว่	С С	٦ ۲	с С	3
• COLUMNe	F4175	427	E	F4475	5	s co	1	6	~	107	117		137	41	5	167	F 41775	e 7	F41575	F4176	F4276	F4376	F4476	F4576	F4676	F4776	F4876	F4976	F41076	F41176	F41276	F41376	F41476	F41576
NUMBER	24	25	26	27	28	29	OP:	31	32	Ē	€ €	5 1 2	36	37	38	6E	40	1• V	42	m4	ŧ	8 4	46	47	8	49	50	51	52	53	54	ភ <u>ិ</u> ភ	56	54

•

.

58	F41676	LL	•	45. 97000	•	66142.89000	14.52000
59	F41776	LL	•	33.70000	•	56693.80000	2.25000
60	F41876	BS	93355. 80001	31.45000	•	139844.80000	•
61	F41976	UL	134175.40000	31.45000	•	134175.40000	•
62	F4177	UL	29605.80000	14.10000	•	29696 .80900	10.66000-
63	F4277	LL	•	51.93000	•	37795.90000	27017000
64	F4377	LL	•	37.28000	•	52284.30000	12.52000
65	E4477	UL	116537.30000	8. 97000	•	116537.30000	15.79000-
66	F4577	es	1037415.20003	24.76000	•	1385849.50000	•
67	F4677	UL	94489.70000	14.73000	•	94489.70000	10.03000-
68	F4777	UL	188979-50000	8.20000		188979.50000	16.56000-
69	F4E77	LL		28.85000	•	220476.10000	4.09000
70	F4977	UL	75591.8C00@	11.21000	•	75591.80000	13.55000-
71	F41C77	UL	75591.80000	8.78000	•	75591.80000	15.98000-
72	F41177	LL	•	29.24000	•	529142.50000	4.48000
				•			

•

.

.

.

A

.

318

NUMBER	• COLUMN.	AT	Β • • ΑCTIVITY • •	● DINPUT COSTD●	LOWER LIMIT.	UPPER LIMIT.	•REDUCED COST•
73	F41277	LL	•	31.97000	9	110238.00000	7.21000
74	F41377	UL	674 02. 70000	11.13000	•	67402070000	13+63000-
75	F41477	UL	212916.90000	9ø 82000	0	212916,90000	14.94000-
76	F41577	υL	34646.20000	12.50000	•	34646.20000	12.26000-
77	F41677	LL	•	49.19000	Ð	66142.80000	24.43000
78	F41777	LL	•	36.06000	•	56693.80000	11.30000
79	F41877	LL	•	33+65000	•	139844.00000	8.89000
80	F41977	LL	•	33,65000	0	134175.40000	8.89000
81	F42077	ιL	1637822.10000	707000	•	1637822.10000	16.99000-
82	F4178	UL	29606.80000	1 5ø 09900	•	29606.80000	11.30000-
83	F4278	LL	•	55.56000	•	37795.90000	29.17000
84	F4378	LL.	•	39º 73000	6	52284+30000	13.34000
85	F4478	UL	116537.30000	9.60000		116537.30000	16.79000-
63	F4578	85	1251415-20001	26, 39000	•	1385849.50700	•
87	F4678	UL	94489 .70 000	15.76000	•	94489•70000	10.63000-
88	F4778	UL	1 8897 9. 50000	8.78000	•	188979.50000	17.61000-
89	F4878	LL	•	300 74000	9	220476.10000	4.35000
50	F4978	υL	75591.80000	12.00000	•	75591.80000	14.39000-
91	F41078	UL	75591.80000	9040000	٠	75591.80009	16.99000-
92	F41178	LL		31.29000	9	529142.50000	4.90000
93	F41278	LL	•	34.08000	•	110238.00000	7.69000
94	F41378	UL	67402.70090	110 91000	•	67402.70000	14.48000-
95	F41478	UL	212916.90030	10.51000	•	212916.90000	15.88000-
96	F41578	UL	346460 20000	13.3700G	•	34646 • 20000	13.02000-
97	F41678	LL	•	52.63000	•	66142.80000	26.24000
98	F41778	LL	•	38.43000	•	56693 80000	12.04000
99	F41 878	LL	•	35.87000	•	139844.80000	9.48000
1 C O	F41578	LL	•	35.87000	•	134175.40000	9.48000
101	F42078	UL	1637822.10000	8. 32000	•	1637822010000	18.07000-
102	F4179	UL	29606.80000	16.15000	•	29606 • 80000	16.75000-
103	F4279	LL	•	59.45000	•	37795090000	26.55000
104	F4379	LL	•	42.51000	•	52284.30000	9.61000
1 05	F4479	LL	116537.30000	10.27000	•	116537.30000	22.63000-
106	F4579	UL	1385849.50000	28.24000	•	1385849050000	4.66000-
107	F4679	UL	94489•70000	17.06000	•	94489070000	15.84000-
108	F4779	UL	1 88979 . 5000 0	9.39000	•	188979.50000	23.51000-
1.09	F4879	8S	93565.70000	32.90000	•	220476+10000	•

110	F 49 79	UL	75591,80000	12.98000	٠	75591 o80000	19.92000-
111	F41079	UL	75591.80000	16.05000	•	75591 o 80000	22.85000-
112	F41179	LL	•	33.48000	•	5291420 50000	• 58000
113	F41279	LL	9	36.46000	•	110238e00000	3.56000
114	F41379	UL	67402.70000	12.89000	•	67402 º 70000	20.01000-
115	F41479	UL	21298 6. 90000	11.37000		21291609000	21.53000-
116	F41 57 9	UL	34646.20000	14.31000	•	34646020000	18.59000-
117	F41679	LL		56.31000	•	66142.80000	23.41000
119	F41779	LL		41.12000	•	56693.80000	8.22000
119	F41879	LL	•	38.38000	•	139844.80000	5.48000
120	F41575	LL	•	38.38000	•	134175040000	5.48000
121	F42C79	UL	1637822.10000	9.00000	•	1637822.10000	23.90000-
1 2 2	F4180	UL	29505. 80000	17.28000		29606080000	18.55000-
123	F4280	LL	•	63.09000	•	37795 . 90000	27.26000

•

EXECUTOR. MPSX RELEASE 1 MOD LEVEL 5

.

•

NUMBER	• COLUMN•	AT	so ●ACT IV ITYo ●●	INPUT COST	LOWER LIMIT.	. UPPER LIMIT.	• REDUCED COST.
124	F4380	LL	•	45.48000	•	522840 30000	9.65000
1 25	F4480	UL	165370 3COCO	10.99000	•	116537030000	24.84000-
126	F4580	UL	1385849.50000	36 • 22000	•	1385849050000	5.61000-
127	F4680	Ա	94489• 70000	18.25000	•	94489070000	17.58000-
128	F4780	UL	188979.50000	10.05000	•	188979050000	25.78000-
129	F488C	ւլ	229476.10000	35.02000	•	220476°10000	• 81 000-
1 30	F4980	UL	75591.80000	13.89000	•	75591 o 50000	21.94000-
1 31	F41080	UL	75591.80000	10.76000	•	75591 • 80000	25.07000-
132	F4118C	85	13085 59999	35.83000	•	529142.50000	•
1 33	F41280	հե	•	39.01000	•	110238.00000	3.18000
134	F41380	UL	67402. 79090	13.79000	•	67402 a 7000 C	22.04000-
1 35	F41480	UL	212916.90000	12. 1700C	•	212916990000	23.66000-
1 36	F41 580	LL	34646.20000	15.31000	•	34646020000	20. 52000-
137	F41 680	LL	٠	60.26000	•	66142a80000	24.43000
138	F41780	LL	•	44.00000	•	56693e80000	8.17000
1 39	F41 880	LL	•	41.06000	•	139844 • 80000	5.23000
140	F41 980	LL	•	41. CE000	•	134175040000	5.23000
141	F42C80	սլ	1537822.10000	9.63000	•	1637822010000	26.20000-
142	F4181	UL	29606 80000	18.49000	•	29606080000	19.84000-
143	F42 81	LL	•	67.50000	•	37795.90000	29-17000
144	F4381	LL	•	48.67000	•	52284.30000	10.34000
145	F4481	ŲL	1 16 53 7. 30000	11.77000	•	116537030000	26.56000-
146	F4581	UL	138584 9.53000	32.33000	•	1385849050000	6.00000-
147	F4681	UL	94485. 70000	19.53000	•	94489s70000	18.80000-
148	F4781	UL	188979.50000	10.75000	•	188979.50000	27.58000-
149	F4881	UL	220476.1000C	37.67000	•	220476 • 10000	-00066
1 50	F4981	UL	75591.80000	14.87000	•	75591080000	23.46000-
151	F41081	UL.	75591.80000	11.51000	•	75591 •80000	26.82000-
152	F41191	BS	368089.60002	38. 33000	•	529142.50000	•
1 5 3	F41281	LL	•	41.75000	•	119238. 90000	3.42000
154	F41381	UL	67402. 7000C	14.76000	•	67402.70000	23.57000-
155	F41481	UL	212916.90000	13.02000	•	212916.90000	25.31000-
156	F41581	UL	34646.20000	16.38000	•	34646.20000	21.95000-
157	F41681	LL	•	64.47000	•	66142.80000	26.14000
158	F41781	LL	•	47.08000		56693. 30000	8. 7500C
159	F41881	LL	•	.43.94000	•	139844.80000	5.61000
160	F41981	LL	•	43.94000	•	134175040000	5.61000
161	F42081	UL.	1637822.10000	10.31000	•	1637822 . 10000	28.02000-

28.88000-	67402.70000	•	15.79000	67402.70000	۶	F41382	174
-	110238.00000	•	44.67000	1 6994 7. 10000	8 S	F41282	173
3.65000-	529142.50000	•	41.0200n	529142.50000	Ē	F41182	172
(.)	75591 • 80000	•	12.32000	75591.80000	Ļ	F41C82	171
26	75591.80000	•	15.91000	75591.80000	ĥ	F49 E2	170
•	220476.10000	•	40. 30000	220476-10000	Ē	F4822	169
	183979 . 50000	•	11.51000	1 88579.50000	Ê	F4782	168
23	94489.70000	•	20.90000	94489.70005	5	F4622	167
10	1 3 85 84 9 • 5000C	•	34.60000	133524 \$• 50000	۶	F 45 E2	166
32	116537.30000	•	12.59000	116537.30000	ç	F4482	165
7	52284 • 30000	•	52.08000	•	F	F4362	164
27.56000	37795.90000	•	72.23000	•	Ē	F42E2	163
24.89000-	29606 • 80000	٠	19.78000	29505.80000	C r	F4182	162

529142.50000	•	46.95000	529142.50000	۶	F41184	212	
75591.80000	9	14.10000	75591.80000	۲	F41084	211	
75591 .80000	•	1 B. 21 000	75591.80000	Ę	FA984	210	•
220476.10000	9	47.04000	220476.10000	20	F 4884	209	
1 88979 . 50000	•	13-17000	188979.50000	ç	F4784	208	
94489.70000	•	23.93000	54 48 9. 7000 0	5	FAGEA	207	
1385849.50000	•	40.38000	1385849.50000	۴	F4584	206	
116537.30000	•	14041000	1 16537. 3000C	Ę	F44.84	205	
52284.30000	•	60.78000	52284.30000	۶	FA384	204	
37795.90000	•	82. 70000	37795,90000	Ē	F4284	203	
29605 .80000	•	22.65000	29636.80000	۶	F 41 84	202	
1637822.10000	•	11.80000	1637822.10000	ç	F42083	201	
134175.40000	•	50.31000	134175 40000	۶	F41983	205	
139844.80000	•	50.31000	139844.80000	۶	F41 883	199	
56693.80000	•	53, 90000	11688.90001	8 ()	F41783	198	
66142.80000	•	73.82000	•	F	F41683	197	
34646.20000	•	1 8. 76000	34646.20000	ç	F41583	196	
212916.90000	•	14.91000	21291 6. 90000	ç	F41483	195	
67402.70000	•	16.0000	67402.70900	۶	F41 383	194	
110238.00000	•	47e 79000	110238.00000	ç	F41283	193	
529142.50000	•	43 89000	529142.50000	ç	F41183	192	
75591.80000	•	13.18000	75591.80000	ç	F41083	191	
75591.80000	•	1 7. 02 000	75591.80007	۶	F49 83	061	
2204 76 . 10000	•	43.12000	220476.10000	۶	F 4 8 2 3	1 29	
188979.50000	•	12.31000	1 28975+50000	٢	F4783	188	
94489 + 70000	•	22.36000	94489.70000	٤	F4683	187	
1385849.50000	•	37.02000	1 385849•50000	5	F4583	186	
116537.30000	•	1 3.4 7900	116537.30009	۶	F • 4 E 3	1 85	
52284+30000	•	55e72000	•	F	F4383	184	
37795.90000	•	77.29000	•	٢	F4283	183	
29606.8000C	•	21.17000	29606.80000	F	F41 83	182	
1637822.10000	•	11.03000	1637822.10000	Ē	F42082	181	
134175.40000	•	47.02000	•	٢	F41582	180	
139244 º 80000	•	47.02000	•	٢	F41 882	179	
56693.80000	•	50-37000	•	٢	F41782	178	
66142ª 800CJ	•	00066.89	•	F	F41682	177	
34646.20000	•	17.53000	34646.20000	۶	F41582	176	
212916.90000	•	13•93000	21291 & 90000	Ē	F41482	175	
. UPPER LIMIT.	••LOWER LIMITO	INPUT COST	au ACT IVITTe	AT	• COLUMN•	NUMBER	

•

EXECUTOR. MPSX RELEASE 1 MOD LEVEL 5

213	F41284	UL	110238.00000	52.13000	•	11023800000	40.53000-
214	F41384	UL.	67402.70000	18.08000	•	67402+70000	74.58000-
215	F41484	UL	212916.90000	15.95000	•	212916.90000	76.71000-
216	F41584	UL	34646.20000	20.07000	٠	34646+20000	72.59000-
217	F41684	UL.	66142.80000	78+ 99000	•	66142.80000	13.67000-
218	F41784	UL	56693e80000	58.79000	•	56693.80000	33.87000-
219	F41684	UL	139844.80000	54.87000	•	139844.80000	37. 79000-
220	F41984	UL	134175.40000	54.87000	•	134175040000	37.79000-
221	F42C84	UL	1637822.10000	12.63000	•	1637822.10000	80.03000-
222	F4185	UL	29606.80000	24. 24000	•	29605.80000	74.91000-
223	F 42 85	UL	37795.90000	88.49000	•	37795.90000	10.66000-
224	F4385	UL	52284. 307 90	65.03000	•	52284.30000	34.12000-
225	F4485	UL	116537, 30000	15.42000	•	116537030000	83.73000-
					-		

× .

324

`

EXECUTOR. MPSX RELEASE 1 MOD LEVEL 5

.

NUMBER	. COLUMN.	A T'	•••ΑCT ΙΫ ΙΤΥ•••	SO INPUT COSTOR	LOWER LIMIT.	UPPER LIMIT.	• REDUCED COST.
226	F4585	UL	138584 5.50000	43.20000	•	1385849#50000	55= 95000-
227	F4685	υι.	94489 . 70000	25.60000	•	94489.70000	73.55000-
228	F4785	Ա.	188979.50000	14.10000	•	188979.50000	85.05000-
229	F4885	UL.	220476.10000	50. 33000	•	220476.10000	48+82000-
230	F4985	じし	75591.80000	19.49300	•	75591.80000	75.66000-
231	F41085	UL.	75591.80700	15.09000	•	75591.50000	84.96000-
232	F41185	UL.	529142.5000C	50.25000	•	529142.50000	48.9000r-
233	F41285	UL.	110238.00000	55.78000	•	110238.0000C	43.37000-
234	F41385	UL.	67402. 7000C	19. 34000	•	67402.76300	79.81000-
235	F41 485	UL.	212916.90000	17.07000	e	212916.90000	82.08000-
236	F41585	UL.	34646.20000	21 . 4 8000	. •	34645.20000	77.67000-
237	F41685	UL.	66142.80000	84 . 52000	•	66142.80000	14.63000-
235	F41785	ખ.	56693 . 80000	62.91000	•	56693.80000	36.24000-
2 3 9	F41885	υι.	139844.80000	58.71000	•	139844.50000	40.44000-
240	F41 985	UL.	134175.40000	58,71000	•	134175,40000	4C.44000-
241	F42055	UL.	1637822. 1000C	13.51009	•	1637822.10000	85.64000-
242	F42184	es	102772.10001	92+66000	•	110000.00000	•
243	P42185	B \$	425772.19002	99.15000	•	430000.00000	•

325

XIX. APPENDIX I: GLOSSARY

Some of the terms met most commonly in discussing energy, both in

this thesis and in general usage, are defined on the following pages.

- ALGAE Fast-growing unicellular or polycellular plants that live in fresh or salt water. They are distinguished from fungi by the presence of chlorophyll and the ability to perform photosynthesis.
- ANTHRACITE "Hard coal"; coal containing less than 10 percent volatile matter; mined mainly in eastern Pennsylvania.
- AUGER MINING Mining coal by drilling horizontally into the coalbed with a large-diameter auger.
- BARREL A liquid volume measure equal to 42 American gallons. One barrel oil = 42 gal (or 336 1b).
- BIOCONVERSION A general term describing the conversion of one form of energy into another by plants or microorganisms. Synthesis of organic compounds from carbon dioxide by plants is bioconversion of solar energy into stored chemical energy.
- BREEDER REACTOR A nuclear reactor that produces more fuel than it consumes. Breeding is possible because of two facts of nuclear physics: 1) Fission of some atomic nuclei produces more than one neutron for each nucleus undergoing reaction. In simplified terms, then, one neutron can be used to sustain the fission chain reaction and the excess neutrons can be used to create more fuel. 2) Some nonfissionable nuclei can be converted into fissionable nuclei by capture of a neutron of proper energy. Nonfissionable uranium-238, for example, can thus be bred into fissionable plutonium.

A measure of the efficiency of a breeder reactor is the breeding ratio, defined as the number of new fissionable atoms produced per atom of fusionable species consumed. The practical measure of efficiency, however, is the doubling time, the length of time required for a net doubling of the amount of fissionable material in the reactor core. Most breeders have doubling times of 10 to 15 years.

Breeder reactors are divided into two types, fast breeders, which use high energy neutrons, and thermal breeders, which use neutrons of much lower energy.

BRITISH THERMAL UNIT (Btu) - The amount of energy necessary to raise the temperature of one pound of water by one degree Fahrenheit at or near 39.2°F (4°C). One Btu is equal to 1054 joules. Conversion rates are approximately as follows: 1 (42 gal) barrel of oil = 5.67 MBtu
1 cubic foot of natural gas = 1,031 Btu
1 KWH of electricity = 3,413 Btu
1 ton coal = 25 MBtu

- CHAR The solid, carbonaceous residue that results from incomplete combustion of organic material. Char produced from coal is generally called coke, while that produced from wood or bone is called charcoal.
- COAL A solid, combustible organic material formed by the decomposition of vegetable material without free access to air. Plant debris early in the earth's history accumulated underwater in swamps and gradually decomposed. With the assistance of anaerobic microorganisms, the debris was gradually transformed into peat partially carbonized vegetable matter. The conversion of peat to coal occurred after most of the water was removed and under conditions of increased pressure and temperature. The conversion, extending over many millions of years, was progressive, leading first to lignite, then to subbituminous, bituminous, and finally to anthracite.
- COAL GASIFICATION The conversion of coal or a gas suitable for use as a fuel.
- COMBINED CYCLE POWER PLANT A power plant in which two or more different types of turbines are used to extract the maximum amount of useful work from combustion of a fuel. The primary units in such a facility are a gas turbine that extracts energy from the combustion gases before they are used to produce steam and a conventional steam turbine. Additional useful work can also be obtained with a turbine operated by a very high-boiling fluid that extracts energy from the combustion gases before they enter the gas turbine (a topping cycle), or with a turbine operated by a low-boiling fluid that extracts additional energy from the spent steam (a bottoming cycle). The overall efficiency of a combined cycle system may reach 50 percent, compared to the 39 percent efficiency of the best steam turbines now available.
- CONVERSION TYPE PROCESS A method to remove potential pollutants from a fuel by converting it to a clean burning fuel, e.g., elimination of sulfur from residual oil by hydrogenation-conversion of coal to a low sulfur fuel oil, etc.
- CRUDE OIL Fetroleum liquids as they come from the ground. Also called simply "crude".
- DEUTERIUM An isotope of hydrogen in which the nucleus contains a proton and a neutron. A deuterium is thus about twice as heavy as a hydrogen atom, whose nucleus contains only a proton, but their chemical properties are almost identical. The natural abundance

of deuterium, the amount of hydrogen that occurs as deuterium in nature, is about 0.0156 percent. Deuterium is generally obtained by electrolysis of deuterium oxide (heavy water) that has been separated from normal water by fractional distillation or electrolysis. It is expected to be the primary fuel for fusion power plants.

- ELECTROSTATIC PRECIPITATION The use of an electric field to remove solid particles or droplets of liquid from a gas. Electrostatic precipitation is increasingly used by coal-burning power plants to remove fly ash from the combustion gases. Precipitation results from interaction of an electric field maintained within the exhaust system and an electric charge induced on the surface of the particle or droplet.
- ENRICHMENT The process of increasing the concentration of fissionable uranium-235 in uranium from the naturally occurring level of about 0.7 percent to the concentration required to sustain fission in a nuclear reactor, generally more than 3 percent.
- ENRICHED URANIUM Uranium in which the amount of the fissionable isotope, uranium-235, has been increased above the 0.7 percent contained in natural uranium.
- FAST BREEDER A breeder reactor that operates with neutrons in the fast energy range, i.e., with energies greater than 0.1 million electron volts. The principal reaction envisioned for most proposed fast breeders is conversion of nonfissionable uranium-238 to fissionable plutonium-239.
- FISSION The splitting of an atomic nucleus by a subatomic particle (free neutron) to produce a large amount of energy. The energy released in fission is much greater than that released in simple radioactive decay and, since fission produces neutrons, the reaction can be made self-perpetuating. Self-perpetuation, the initiation of fission in adjacent nuclei by neutrons from a nucleus that has undergone fission, is known as a chain reaction. If the chain reaction proceeds slowly, as when some neutrons are prevented from hitting adjacent fissionable nuclei by the presence of a moderator, it produces heat that can be used for production of steam to generate electricity. If the chain reaction proceeds to rapidly, it produces an explosion of tremendous force.
- FOSSIL FUEL Any naturally occurring fuel of an organic nature, such as coal, crude oil, and natural gas.
- FUEL CELL A device for directly converting the energy released in a chemical reaction into electrical energy.

- FUEL OIL Relatively heavy refined oil used as fuel for producing heat or power.
- FUSION The formation of a heavier nucleus from two lighter ones. The loss mass appears as energy in the same manner as in fission. The most important reactions considered for a fusion plant are: 1) The combination of two deuterium nuclei (one proton and one neutron a piece) to produce a helium-3 nucleus (two protons and one neutron), a neutron, and 3.2 million electron volts of energy. 2) The combination of two deuterium nuclei to produce one tritium nucleus (one proton and two neutrons), one proton, and 4.0 Mev of energy. 3) The combination of a deuterium nucleus and a tritium nucleus to produce a helium-4 nucleus (two protons and two neutrons), one neutron, and 17.6 Mev of energy. Because of its high energy release and because it can be initiated at a lower temperature, this reaction is most often proposed as the basis of fusion power plants.

GEOTHERMAL ENERGY - The heat energy available in the earth's surface.

- GROSS NATIONAL PRODUCT (GNP) The total market value of the goods and services produced by the Nation before the deduction of depreciation charges and other allowances for capital consumption; a widely used measure of economic activity.
- HEAT PUMP A device which transfers heat from a colder to a hotter reservoir by the expenditure of mechanical or electrical energy when the primary purpose is heating the hot reservoir rather than refrigerating the cooler one. A heat pump is essentially a reversed refrigeration process. Heat pumps are a far more efficient method of electric residential heating than the resistive heating now commonly used.
- HIGH-SULFUR COAL Generally, coal that contains more than one percent sulfur by weight.
- ISOTOPE Any of two or more kinds of atoms with the same atomic number (the same number of protons in the nucleus), but with different atomic masses because of differing numbers of neutrons in the nucleus. All isotopes of an element have the same number of orbital electrons, and thus very similar chemical properties, but the differing atomic masses produce slightly different physical properties.
- KILOWATT-HOUR (KWh) The amount of energy equal to one kilowatt in one hour; equivalent to 3,413 Btu's.
- LIGHT WATER REACTOR (LWR) A reactor that uses ordinary water as distinguished from one that uses heavy water (deuterium oxide, D₂O).

- LIGNITE A brownish-black coal in which the alteration of vegetal material has proceeded further than in peat but not so far as subbituminous coal. It has less than 8,300 BTU's when it is moist, mineral matter free.
- LIQUIFIED NATURAL GAS (LNG) Natural gas that has been changed into a liquid by cooling to about -160°C for shipment or storage as a liquid. Liquefication greatly reduces the volume of the gas and thus reduces the cost of shipment and storage.
- LIQUEFIED PETROLEUM GAS (LPG) Propane, butane, or mixtures of them; kept in the liquid state by pressure or refrigeration to facilitate handling.
- LOW SULFUR COAL AND OIL Generally, coal or oil that contains one percent or less of sulfur by weight.
- MAGNETOHYDRODYNAMIC (MHD) GENERATOR A technique for generating electricity directly by moving liquids or gases through a magnetic field rather than indirectly by means of turbines and rotating generators.
- NATURAL GAS A gaseous fossil fuel generally found in association with oil and whose composition varies with its origin. Most unprocessed natural gases contain about 60 to 80 percent methane, 5 to 9 percent ethane, 3 to 18 percent propane, and 2 to 14 percent heavier hydrocarbons. The energy content of raw natural gas varies from 900 to 1300 Btu per standard cubic foot.
- OIL SHALE A sedimentary rock containing solid organic matter (kerogen) that yields substantial amounts of oil when heated to high temperatures.
- PETROLEUM A naturally occurring material (gaseous, liquid, or solid) composed mainly of chemical compounds of carbon and hydrogen.
- PHOTOVOLTAIC CELL A type of semiconductor in which the absorption of light energy creates a separation of electrical charges. This separation creates an electrical potential that can be tapped by allowing electrons to flow through an external circuit. The net effect is direct conversion of light, especially solar energy, into electricity. The efficiency of such cells is generally very low, however, and their cost is still quite high.
- PROVED RESERVES Quantities of hydrocarbons which on the basis of geological and technical data can almost certainly be considered recoverable from known drilled reservoirs under present economic and technical conditions.
- PROBABLE RESERVES Quantities of hydrocarbons which is hoped can be recovered from known reservoirs but without the certainty that

would enable them to be included in the preceding category.

- QUADRILLION BTU 10¹⁵ (thousand million million) Btu's; approximately equal to the heat value of 965 billion cubic feet of gas, 175 million barrels of oil, or 38 million tons of coal.
- RADIOACTIVITY The spontaneous disintegration of the nucleus of an atom with the emission of corpuscular or electromagnetic radiation. These emissions are of three principal types, called alpha, beta, and gamma. Gamma radiation is the most dangerous of the three, since its penetrating power is approximately 100 times that of beta radiation and about 10,000 times of alpha radiation.
- REACTOR An assembly of nuclear fuel capable of sustaining a fission chain reaction.
- <u>RESERVES</u> The amount of a mineral expected to be recovered by present day techniques and under present economic conditions.
- RESERVOIR A discrete section of porous rock containing an accumulation of oil or gas, either separately or as a mixture.
- RESOURCES The estimated total quantity of a mineral in the ground; includes prospective undiscovered reserves.
- SOLVENT REFINING A method to convert coal and hydrogen under pressure to a clean (low-sulfur, low ash) fuel by dissolving most of it, then separating the undissolved coal and mineral matter (ash) from the extract.
- STANDARD CUBIC FOOT (SCF) The amount of gas contained in a volume of one cubic foot under standard conditions of temperature and pressure.
- STACK GASES Gaseous substances emitted from power-plant smoke stacks during burning of fuel.
- STRIP MINING The mining of coal by first removing the overburden from the coalbed.
- SUBBITUMINOUS COAL Coal of rank intermediate between lignite and bituminous. It has calorific value in the range of 8,300 and 13,000 BTU, calculated on a moist, mineral matter free basis.
- SYNTHETIC FUEL Gases or liquid hydrocarbon material produced from solid carbonaceous material.
- TAR SAND Any sedimentary rock that contains bitumen or other heavy petroleum material that cannot be recovered by conventional petroleum recovery methods.

J

- THERMAL BREEDER A breeder reactor that operates with neutrons in the thermal energy range; that is, neutrons with energies less than 1 electron volt. The reaction most often considered for use in thermal breeders is conversion of nonfissionable thorium-232 into fissionable uranium-233.
- UNIT TRAIN A string of locomotives and cars used exclusively for bulk shipment of minerals or coal from the mine to a single point of consumption. Because all the cars go to one destination, the locomotives can be distributed more efficiently throughout the train, there is no expense of assembling the train, and the overall cost of operation is substantially lower than for a conventional train.

WASTE HEAT - The heat released to the environment from a power plant.

WILDCAT - A well drilled in a locality that has not previously produced crude oil or gas.