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I. INTRODUCTION 

As a society becomes more wealthy. It can and does provide more goods 

and services that require larger amounts of energy. The climate and 

economic specialization of a region, as well as the cost of energy, can 

affect the relationship between energy consumption and standard of living. 

Nevertheless, it is reasonable to expect that as a nation increases its 

per capita income, its consumption of energy will also rise. 

The United States has entered an era of profound alteration in 

traditional patterns and trends in the field of energy. Price relation

ships, rates of use, sources of supply, and national security all have 

become areas affected with uncertainty and conflict. 

While the need for concern regarding the rapid depletion of the U. S. 

energy resources has long been evident to those in the energy field, 

awareness of the seriousness of the situation has only recently become 

âppâ&êïït to ths gcIÊslTâl public. This U3S Of tllê paÈTêSêS, "Tsîê EïtS&gy 

Crisis" or "The Energy Dilemma" has contributed to this awareness and to 

the need to work toward a satisfactory solution. 

The Arab oil embargo of recent years has greatly aggravated this 

crisis. However, the underlying causes lie farther back in the past and 

hopes of long term remedies lie well into the future. Full-blown energy 

problems did not hit the country until 1973, although there were much 

earlier hints of impending trouble. Among them were the refusal of 

numerous natural gas utilities to connect new residential customers, and 

and voltage reductions and load shedding instituted by a number of eastern 

electric utilities during summer peak load periods. 
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As electric systems become progressively more complex and inter

connections proliferate, system planning becomes an increasing challenge 

in the electric utility industry. Generally, the system planning 

activities center on definitive short term analysis of power system 

performance with peak load projections up to ten years in the future. 

System planning is more than a one-man or one-department problem. 

Development of reliable and economical systems requires the skills of 

systems operators and the judgement of management as well as the talents 

of planning engineers. 

All factors considered, computer programs are useful tools for the 

development of reliable and economical systems. Generally, all system 

planning activities may be divided into three tasks; 1) synthesis -

creation and development of preliminary plans, 2) analysis - technical 

evaluation of reserve requirements and simulated operation for load flow 

and stability analysis, 3) optimization - economic evaluation to identify 

minimum cost alternatives from plans to meet reliability criteria. To 

perform these tasks, numerous quantitative modeling techniques, which 

are mostly computerized, are available and are used extensively. Load 

flow, system stability, short circuit, system expansion, reliability, 

and numerous other modeling programs are used for accurate analysis. 

Repetitive analysis of this kind, tempered with sound judgment, is the 

basic approach to system synthesis. 

Such short term planning is a must for all growing utilities. But, 

long term conceptual planning is also needed to evaluate conditions that 

will affect the whole industry as well as individual utilities, thirty 
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years or more into the future. Such planning activities are frequently 

deferred in lieu of seemingly more critical problems, but their importance 

should not be underestimated. 

It is essential that research and development (R & D) investment 

priorities reflect the future needs of the country as well as those of 

individual companies. These future needs should be defined, since much 

research concerning new techniques is already underway and R&D invest

ment decisions are continually being made by both industry and government. 

Some information about future needs and problems may, of course, be 

derived from short term analyses and forecasts, but short term planning 

provides no information concerning the extensiveness, seriousness or 

persistence of these problems in the more distant future. Presently, 

there are problems which are unsolvable by conventional means that 

eventually were revealed by short term planning, and that might not now 

exist, had they been anticipated through long range analysis and planning 

at an earlier time. 

The present deplorable natural gas situation is an excellent example 

of the consequence of insufficient long range planning. Even though 

natural gas is less plentiful than any other fossil fuel, low prices 

were fostered in the 1950's and 1960's. Consequently, the consumption of 

natural gas increased very rapidly, so that it new accounts for about 

one-third of all energy consumed in this country. The low prices not 

only increased consumption, but also provided no incentive for further 

exploration. The natural gas shortage was already a reality when the 

problem finally was recognized. 
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Because of the rapid changes in technology, fuel resources, and 

environmental constraints, the need for long term system planning becomes 

more urgent than in the past. Long term planning is not intended to spec

ify step-by-step detailed system developments, but rather to outline 

the most likely system expansion pattern based on today's view of the 

future. Long term planning provides a guide for initiating short term 

decisions and actions, outlining R&D requirements and priorities, and 

recommending utility policies and their associated timing. A long term 

system evaluation enables planners to explore various options in supplying 

electric energy and their associated effects on fuel resources, land, 

water, and financial requirements. 

Anyone undertaking long term planning must keep abreast of knowledge 

in several interrelated disciplines, since developments in any of them 

could affect the whole energy field. For instance, transmission require-

seats are affected by power plant technology and siting, which in turn are 

affected by fuel developments. 

Long term planning must be quantitative as well as qualitative. 

This is a direct consequence of the fact that the essential characteristics 

of and the relationships between the various energy related fields are 

quantitative in nature. But, it is not essential or possible for long 

tsrm analyses to be as precise as short term analyses must be, which 

can pose a problem for engineers who are accustomed to working with ac

curacy ' It is impossible to attain true precision when forecasting and 

planning for the distant future, but this does not preclude the necessity 

of quantitative analyses, nor does it render long term planning invalid -
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it just makes it more challenging. To be worthwhile, the forecast must 

simply allow better operation than could be achieved without it. Quinn 

(1) states that the alternative is to continue to act on simple hunches 

about the future and to do this, says Quinn, is to be irresponsible. 

The first part of this study, which is discussed in Chapters II, 

III, and IV, deals with the entire energy field, particularly stressing 

electric power. Energy sources are examined; energy supply and demand are 

projected to the year 2000 on the basis of statistical data; various U. S. 

energy forecasts are compared; and some energy-related topics are discussed 

in relation to these forecasts. The subject studied is extremely broad, 

and of necessity, some areas are treated more lightly than others. 

In the second part of this study, which is discussed in Chapters V 

and VI, and computerized electric energy cost model was developed for the 

electric power industry to minimize the cost of energy used for electric 

gerisrstiou by cpti—jsi allocation cf various fuel-mixes over a period of 

n years, where the energy is subject to a large number of physical and 

environmental constraints. A mechanism was built into the model, which 

facilitated rapid evaluation of the consequences of different proposed 

energy policies. 

In order to keep the size of the model within reasonable bounds 

(because of a limited computer budget, difficulties involved in obtaining 

the necessary coefficients, and a time limitation), the model is applied 

to the State of Iowa rather than to the whole country. Results of the 

applications of the model are presented in Chapter VI. 

Some studies and computer output and programs., if Included in the 
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body of the text, would distract from the main theme. These are included 

in the Appendices, and attention is directed to them wherever appropriate. 

Also, in order to define some of the terms encountered most commonly in 

discussing energy, both in this study and in general usage, a glossary 

is included. 
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II. REVIEW OF THE LITEBArmi! 

A. Energy Dilemma 

An extensive literature search was done concerning the energy dilemma 

of the United States (1-171). Many papers were found on the general con

cepts of energy rather than on the future of the problem. Most of the 

concepts in these papers are reviewed in the following chapters in order to 

compare the results of this study with the results of the others. 

What is the dilemma in energy? To many scientists, the dilemma is a 

temporary phenomenon, which will be resolved soon by the availability of 

cheap and abundant nuclear power. Many nonsclentists think of it only in 

terms of power brownouts or gas shortages. It has also become fashionable 

to blame the environmentalists for the problem. 

Dalai (2) pointed out that the energy problem was far more complex 

than power plant location or the trans-Alaska oil pipeline. He argued 

that the energy problem exists not only on the supply side, but alao oa 

the demand side. He suggests that some of the technological solutions that 

are popular today might not be desirable in the long run, and that new 

technological initiatives are necessary, along with certain changes in 

demand, to achieve energy stability. In the long run, however, he con

cludes that the problem caouot be solved by sophisticated technology alone, 

but will require the combined efforts of economists, technologists and 

sociologists to devise a stable, affluent society that can exists in 

harmony with nature. 

Since many energy-associated problems are global in nature and must 

be solved in concert with other nations, some authors have tried to bring 
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a new perspective to the United States' energy dilemma by studying the 

world's energy resources and consumption. 

In 1964, an extensive study was done by Guyol (3) which surveyed 

the electric power industry in 162 countries in the world. He con

cluded that the data that appear in national reports on the electric 

power industries of different countries do not fit into a single pattern. 

Consequently, it is difficult to compare the industry of one country 

with that of another. It is even more difficult to combine data on 

several countries and thus arrive at a composite picture of the elec

tric power industry in the world, or in any major region of the world 

except Western Europe and the noncommunlst portion of the Far East. 

The study attempted to correct this situation by collecting data on the 

electric power Industry in every country of the world, putting these 

data in comparable forms, and combining them to produce certain regional 

and world aggregates. 

Because the electric power industry is important not only in its 

own right but also because of its role in human affairs, Guyol has 

carried his study Into an exploration of certain factors affecting or 

affected by the industry. He observes some relationships between the 

quantities of electricity consumed and «aount of work performed in the 

economy as a whole and In particular sections of the economy. 

In 1971, Darmstadter (4) studied quantitative aspects of long run 

trends in energy consumption, production, foreign trade, and transforma

tion of the world's fuel base away from coal and toward oil and natural 
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gas during this century. He pointed out that these latter changes, which 

occurred at different times and rates in the major geographic regions, 

were particularly important for two reasons: they reflected significant 

changes which were taking place in the world's Industrial life and in 

economic activity in general. Furthermore, they caused wholly new patterns 

of regional economic interdependence. iSiis interdependence was seen most 

sharply in the industrial countries such as Japan, those in Western 

Europe and now the U.S. upon largely underdeveloped regions such as the 

Middle East and North Africa for their petroleum requirements. 

In 1972, Felix (5) concluded that the industrialized nations need 

extra energy resources, because only Increasing prosperity could provide 

a successful challenge to the environmental problems. These extra re

sources were also required to coatrlbute more than they had in the past go 

needs in the underdeveloped areas within their own borders, as well as to 

reduce the growing gap between the industrialized nations as a whole and 

the developing world. 

Freeman (6) wrote that there were several trends which combine to 

Influence the future availability of energy. Aeeordiî  to him diese con

tributing factors include: 1) forecast of continued exponential growth in 

energy use, 2) forecast of continued growth in the portion of energy used 

as electricity, 3) continuing expectancy of the affluent to achieve an 

improved quality of life, 4) depletion of domestic oil and gas reserves, 

5) concern for environisental protection. 

Cook (7) studied the energy use pattern in the U.S. for 1970 and 

pointed out that two of the primary sectors of the budget, transportation 
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and electric power generation, are responsible for the relative ineffi

ciency of energy usage. He also noted that electricity accounted for only 

fifteen percent of useful work performed, yet it is the component of 

energy people worry about most. This is because electric power generation 

has been increasing at a rate of seven percent annually (doubling every 

10 years), whereas the energy budget has been increasing about 3.2 percent 

annually. The American Petroleum Institute claimed that the energy bud

get would increase at 4.1 percent annually in the coming decade. This 

indicates that per capita consumption is constantly increasing, which 

suggests that even strict birth control is not going to eliminate the 

need for more power (8). 

Altman, et al, (9) also agree that continued exponential growth cannot 

continue forever. The reasons for this are simple : 1) the rate of utili

zation of fossil fuel, and in the near future nuclear fuels, is becoming a 

large fraction of the total supply. 2) The waste products of energy 

utilization such as waste heat and air and water pollutants are also 

becoming extensive enough to have adverse affects on the environment. 

Multiple authors have assembled data on energy consumption in the 

past and some have forecasted future trends. Kottel and Howard (10) and 

Starr (11) have traced energy usage back to 1850, when wood was the domi

nant fuel, and documented the rise of coal, petroleum, natural gas, and 

hydroelectric power to 1970. Gaucher (12) extrapolated the data from 1800 

to 1970 into the 21st and 22nd centuries. Cook (7) summarized the data 

and projections to the end of the 20th century in terms of the percentage 

of the total energy consumption attributable to each fuel. In addition, 
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Kcttel and Howard and Cook correlated energy consumption with Gross 

National Product (GNP) and population. Considerable detail on the 

structure of energy use was presented in Morrison and Readling's report 

(13) on their energy model of the United States. Ritchings (14) and Cook 

(15) presented data on the portions of energy used in the residential, 

commercial, industrial, transportation and power production sectors. 

In their study Meadows, et al. (8) concluded: 1) If the present 

growth trends in the world population, industrialization, pollution, food 

production, and resource depletion continue unchanged, the limits to 

growth in the world will be reached sometime within the next one hundred 

years, 2) It is possible to alter these growth trends to establish a 

condition of ecological and economic stability that is sustainable far 

into the future, 3) If the world's people decide to strive for this second 

outcome rather than the first, the sooner they begin working to attain it, 

the greater will be their chances of success. For example, by examining 

the various aspects of the energy dilemma, the required technology can be 

developed to meet the societal objectives. 

Man's attempt to improve his living and working conditions requires 

the expenditure of power. Only three forms of energy are potentially 

available which could eliminate or significantly reduce the adverse effect 

on the environment. These are: 1) solar energy, 2) geothermal energy, 

3) fusion power. Of these, solar energy utilization is in its infancy; 

geothermal energy availability is limited; and fusion power is in its 

research stage. 

Altman, et al. (9) argued that the development of solar and possibly 
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fusion energies were a must. Statistics Indicate that the United States, 

with less than seven percent of the world's population, uses roughly 45 

percent of the world's resources. A slightly larger ratio applies to the 

use of nuclear and fossil fuels. If the rest of the world wanted to 

achieve the United States' rate of energy consumption, this would, 

according to Altman et al, require an eight-fold Increase of the present 

rate of energy resource production in the world. This would not only be 

difficult to achieve, but would lead to rapid exhaustion of many of the 

new commonly-used energy resources. They divided the total energy problem 

into four main categories: I) energy needs for propulsion, 2) energy 

needs for environmental control, 3) energy needs for process heat, 4) 

energy needs in the form of electric power. They discussed these cate

gories frcm the points of view of the distant future and the near future. 

Landsberg and Schurr (16) reviewed all available energy sources, and 

reached the conclusion diat solar energy was the most desirable fcrm of 

energy in the long run. Because: 1) its use does not disturb the 

earth's radioactive equilibrium, 2) Its use results in essentially no 

pollution of any kind, 3) it is an energy source for which one does not 

have to compete. 

Fusion energy appeared next on their list as far as desirability was 

concerned. They pointed cut that it would have the following drawbacks 

as compared to solar energy: 1) it would produce large amounts of power 

which would then have to be distributed over a long distance, 2) it could 

disturb the earth's radioactive balance. 

They argued that nuclear fission energy was rather undesirable. It 
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may be needed as a transition system, but in the long run it would suffer 

from the following disadvantages: 1) safety problems concerning the 

plants, the shipping and processing of radioactive materials and final 

disposal, 2) very limited efficiency leading to thermal pollution, 3) 

psychological resistance based on past failures of fail-safe systems, 4) 

extreme vulnerability in times of war. 

Therefore, Landsberg and Schurr concluded that fossil fueled power 

plants may yet turn out to be sensible choices particularly if the follow

ing developments take place; 1) coal gasification, 2) development of high 

efficiency turbines, 3) development of waste heat utilization. 

B. Energy Forecasts 

The prediction of the details for future energy consumption is a 

difficult process because of the multitude of factors influencing this 

consumption. Indeed, the measurement uncertainties, the random nature, 

and the increasing interactions or these factors îsaks energy forecasting 

an inexact science. 

During the past few years numerous forecasts have been undertaken by 

various organization. Each of these forecasts has its individual charac

teristics and its own rationale. Some of these forecasts are reviewed in 

the following pages. 

In 1972, a study was done by the Department of the Interior (17) 

which represented a far-sighted approach based on primarily historical 

growth patterns. Its purpose was to assess the present energy demand and 

to forecast the future demand as accurately as possible. It relied 

heavily on the use of oil and gas to meet the nation's future œergy 
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petroleum in the year 2000. Of this, only 29.7 percent will come from 

domestic supplies. The remainder will be required to come from supple

mental supplies such as imports or increased production from new reserve 

discoveries. In addition, it also predicted that 18 percent of the na

tion's energy for the year 2000 will come from gas. Of this, 28 percent 

was expected to come from imports. 

In the same year, the National Petroleum Council (18) attempted to 

present a comprehensive look at the U. S, energy outlook for the next 

10-15 years. The conclusions in this study were based on supply and 

demand balances derived from four supply cases and an intermediate demand 

projection. It assessed the financial requirements implicit in its do

mestic supply projections and also assessed the balance of trade implica

tions of import projections. The study showed that a very, broad range of 

outcomes in the energy future was possible. 

In 1974, the Ford Foundation's study (19) presented three alternative 

futures based on different assumptions about energy growth patterns. The 

first future was the "historical growth" scenario which assumed that the 

use of energy will continue to grow much as it has in the past. The 

second was a "technical fix" scenario, which maintained the same growth In 

energy services, but stressed national effort to reduce growth in energy 

use through.improved efficiency. The third was the "zero energy growth" 

scenario which would require changes in both lifestyles and the economy 

to reach a steady no-growth state in energy consumption by the late 1980's. 

Each of these scenarios was further generalized by considering alternative 
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mixes of resources to achieve these futures. 

Also in 1974, a study called Megastar (20) was produced. The purpose 

of this study was to provide a methodology for assessing alternate energy 

futures and to apply that methodology to the critical evaluation of three 

previously proposed energy scenarios. These were Westinghouse's Nuclear 

Electric Economy scenario and the Ford Foundation's technical fix scenario, 

and a Megastar generated alternative scenario to the Ford technical fix 

scenario. These three scenarios represented different paths of energy 

consumption from the present to fee year 2000, The objective of this 

study was to analyze the requirements necessary to realize each of these 

scenarios and the impacts of those requirements on the society. The 

study suggested that the decision-makers and the society should have the 

greatest possible awareness of the implications of alternative policies 

before decisions were made. 

The Project Independence Report (21) was prepared by the Federal 

Energy Administration (FEA) in 1974. It was initiated to evaluate the 

United States' energy problems and to provide a framework for developing 

a national energy policy. However, the study did not recommend specific 

policy actions. While the Ford Foundation report based its analysis upon 

three different energy demand scenarios, the FEA report based its analysis 

primarily on varying assumptions for the price of crude oil. It analyzed 

various strategies for energy policy based on a world crude oil price of 

four dollars per barrel, seven dollars per barrel, and the present price 

of eleven dollars per barrel. The report examined a base case labeled 

"business as usual" and three alternatives: 1) accelerated development, 
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2) an effort focusing on conservation and "demand management", and 3) an 

emergency program whose main elements would be a national stockpiling 

effort, standby conservation measures, and cooperation among consuming 

nations. This analysis weighted the nation's domestic energy policy 

alternatives, not only in teirms of their vulnerability to support dis

ruptions, but many other important factors, such as economic and social 

impacts, environmental effects, and regional differences. 

In this thesis, the entire energy field is covered, with special 

emphasis on electric power. The sources of energy, projected energy 

supply and demand to the year 2000 on the basis of statistical data are 

reviewed and a survey of U. S. energy forecasts are made in order to make 

a comparison between the projections. Some energy-related issues are 

discussed in light of the projections. 

Furthermore, a new approach to optimize energy costs for the utilities 

and consequently for the consumer is introduced. In order to achieve this, 

a computerized electric energy cost model has been built for the electric 

generation by optimum allocation of various fuel-mixes over a period of 

n years, where the energy is subject to a large number of physical and 

environmental constraints. 
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III. ENERGY DEMAND PROBLEM 

A. The Role of Energy 

The pattern of energy consumption in industrialized societies differs 

substantially from that in nonindustrialized societies. Nonindustrialized 

societies still are heavily dependent on the traditional energy sources 

of antiquity-local solar energy that is made available through the agencies 

of food, work animal feed, fuel wood, fuel dung, agricultural wastes, 

windpower, and direct waterpower. Field work is largely accomplished by 

the power of human and animal muscles, and its energy sources are food and 

animal feed. Per capita consumption of energy is very small - only a few 

times the food energy required to sustain life. In contrast, industrial

ized societies consume large quantities of fossil fuel and electricity, 

the fuel consisting of coal, oil, and natural gas, and the electricity 

eenerated oartlv from fuel and oartlv from falling water. Fossil fuels, 

and to a lesser extent electricity, are shipped long distances from their 

points of origin to their points of consumption. Per capita consumption 

of energy is as much as a hundred times that contained in food. 

The Industrial revolution was man's first significant step toward 

an energy intensive society. Since then, man has become increasingly 

dependent on machines to produce goods and services, thereby obtaining 

a greater yield than would be possible by muscle power alone. But this 

machinery requires energy, and the level of production of goods and ser

vices is more or less proportional to the energy input. In 1970, in 

the U. S., the social and industrial machinery, which produced 974 billion 
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dollars worth of goods and services, was fueled by some 68.8 quadrillion 

Btu of energy, nearly all of which was produced from fossil fuel (7). 

The efficiency of energy use in producing goods and services depends 

on the kinds of goods and services produced and the technical efficiency 

of the industrial machinery. It is unquestionably desirable to increase 

the technical efficiency of our energy conversion devices, since the same 

useful products could therby be made available with less fuel. This can 

only be done through further technological advances. It is interesting 

to note that the average heat rate of electric power plants in the U. S. 

in 1920 was 37,200 Btu/k)& (22), but in 1970 it was about 10,900 Btu/Wh 

(23). The technical efficiency of the total U. S. energy system, from 

potential energy at points of initial conversion to work at points of 

application, is about 50 percent. The economic efficiency of the system 

is considerably less. This is true because work is expended in extracting, 

refining and transporting fuels, in construction and operation of con

version facilities, power equl̂ oent and electricity"distributed networks, 

and in handling waste products and protecting the environment (7-27). The 

technical efficiency of energy utilization will continue to change with 

technological innovation, and the kinds of goods and services that people 

want will change with time. In forecasting, one attempts to anticipate 

these changes In a quantitative way. Any technological change ûsîst be 

preceded by research, development, and field application of new concepts. 

In the energy field, each stage requires a huge Investment in technical 

manpower and capital. Energy research must compete for funding with.other 

1 IS 
One quadrillion = 10 in this study, as is common in U. S. usage. 
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projects of high national priority - and the needs are usually greater 

than the resources. Technical manpower also is limited, since knowledge 

and expertise in any new field are limited. These human and monetary 

restrictions generally delay major technological changes in the energy 

field. Furthermore, even after the R&D stage and the production of a 

successful prototype, more time passes before a new process can be inte

grated with the existing social stiructure. Consequently, it takes much 

time, perhaps decades, for a society to implement major technological 

changes in the energy field (7). Development of nuclear technology can 

be mentioned as an example. 

A measure of a nation's production of goods and services is Its gross 

national product (GNP). Figure 3.1 shows the relationship between GNP 

per capita and energy consumption per capita for a number of countries 

in 1968 (28). As one might expect, there is a strong general correlation 

between energy consumption and GNP; but it is far from being a one-to-one 

correlation. Some.countries have a high level of energy consumption vith 

respect to GNP; other countries have high output with relatively less 

energy consumption. Such differences reflect contrasting combinations of 

energy-intensive heavy industry and light consumer-oriented and service 

industries (characteristic of different stages of economic development), 

as well as differences in the efficiency of energy use. 

B. Energy Consumption Growth 

The annual consumption of all forms of energy in ae U. S. has in

creased seventeenfold in the past century, with a corresponding population 
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increase of little more than fivefold. Figure 3.2 shows this trend, 

using statistics from the U. S. Bureau of Mines (11). The growth rate 

of total energy consumption since 1850 has been 2.8 percent. The great 

depression of the 1930*8 had a retarding effect on the growth. The growth 

rate from 1960 to 1970 was about 4.8 percent per year. The total energy 

consumption during the period from 1850 to 1970 was approximately 2.34 Q, 

18 
where one Q is equal to 10 Btu. Fuel wood was the dominant energy 

source in 1850. By 1910 coal accounted for about 75 percent of the total 

energy consumption and fuel wood accounted for only some 10 percent. In 

the 50 years between 1910 and 1960, coal lost its leading position to 

natural gas and oil. Today, nuclear power is emerging as a national 

energy source. 

Until roughly the beginning of the twentieth century, all energy 

production involved combustion of fuel at the point of energy use. 

However, a new industry was bom when the first electric power station, 

Pearl Street Electric Station in New York City, went into operation in 

1882. The electric utility industry grew rapidly, at first primarily to 

meet illumination requirements, but later to provide for many other uses. 

The history of electric energy sales in the U. S. is shown in Figure 3.3, 

which shows a growth rate of about 7.53 percent per year. By 1320, the 

production of electricity accounted for about 11.5 percent of the annual 

energy demand. The portion of total energy consumption used in electric 

power production continued to rise, as shown in Figure 3.4, and today's 

power plant use is about 25 percent of the national energy consumption. 

Part of the tremendous increase in energy consumption since 1850 is 
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at least partially attributable to population growth. The U. S. population 

Increased exponentially from about 23 million In 1850 to about 208 million 

in 1970, vdilch is equivalent to approximately 1.74 percent per year. The 

growth in total energy consumption was even faster. Consequently, the per 

capita consumption of energy also increased substantially during this 

period. Figure 3.5 shows the growth in per capita energy consumption from 

the period of 1850 to 1970, which was necessary to sustain a similar 

increase in the average living standard. Growth in per capita energy con-

sumptloa was equivalent to sbout 1.03 percent per year during this period. 

However, there was virtually no growth at all in the per capita use of 

energy during the three decades from 1850 to 1880. The effective growth 

rate from 1880 to 1970 was about 1.21 percent per year, and the growth 

rate during the last two decades, 1950 to 1970, has been about 2.29 

percent per year. 

C. Energy consumption 

An examination of the amount of energy utilized by various sectors 

of the U. S. economy reveals that ssuch of the recent increase is due to 

increased utilisation by the household, ccmmercial and transportation 

sectors, rather than by the industrial ones. In 1970. almost 10 percent 

of the country's useful work was done by electricity. Figure 3.6 indi

cates the role of the electric utility industry in supplying the nation's 

energy needs. The mmerlcal values shewn in this figure are based on 

information from several sources (22, 23, 29, 30, 31). 

All energy conversion produces unrecoverable waste heat. This heat 
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ultimately radiates to space. The worldwide man •made thermal load, how

ever, is so small compared with the solar heat load as to be insignificant 

on a global scale. In the year 2000 the worldwide use of energy will still 

be much less than a thousandth of the sun's heat input to the earth. 

Nevertheless, one can expect that the concentrated generation and con

sumption of energy in densely populated areas will be capable of affecting 

both the local climate and ecological systems. According to Starr, the 

only practical solution may be to limit the population density of our 

major cities (11). 

The top of Figure 3.6 shows the primary energy sources, and the 

bottom of the figure shows user categories. The electric power industry 

used about 24 percent of the primary energy, 31 percent of that in pro

ducing electrical energy, and in the process losing 69 percent of it as 

waste heat. The waste heat was rejected at the power plant, and not 

shipped to the user location, as in the case of the other three quarters 

of the primary fuel (23). 

Horizontal dimensions in Figure 3.6 are approximately proportional 

' 15 
to the quantity of energy in 10 Btu. Petroleum and natural gas are 

the dominant fuels, supplying over 75 percent of the primary energy 

required for the nation. Coal represents a smaller proportion of the 

supply, about 20 percent, and the rest is primarily hydro and nuclear 

energy. Small and insignificant sources are ignored for simplicity. 

About 23 percent of the oil requirement was provided by imports (29, 31). 

The four ultimate user sectors are dimensioned to reflect the quantity 

of energy they consume, including their share of the waste heat produced 
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at the electric power plants. This total consumption Is divided into 

primary fuel consumed and electricity used. The industrial sector 

generally accounts for the greatest share of energy use, about 43 percent; 

the transportation sector uses somê at less, 25 percent; and the resi

dential sector is still less, 22 percent. The commercial sector uses the 

least, accounting for about 10 percent of all energy consumption (29). 

All energy conversions are more or less inefficient, of course, as 

the figure clearly indicates. In the case of electricity, there are losses 

at the power plant, in transmission and at the point of application of 

the power; in the case of fuels consumed in end uses, the loss comes at 

the point of use. The waste heat produced at electric power plants, 

15 
11.4 X 10 Btu, does, of course, enter the biosphere. Nearly all of 

the electric energy that is carried to various points of use, degrades 

to heat. Other fuels consumed in the user sectors degrade to heat, except 

for a portion of fossil fuel used for nonenergy purposes, which amounts 

to nearly one-third of the primary energy used in the industrial sector. 

Thus, the energy associated with these industrial raw materials, equiv-

15 
aient to about 7.0 x 10 Btu in 1970, does not become degraded heat in 

the environment. In this category are such items as lubricating oil, 

asphalt for road surfaces, chemical feedstock, etc. (22, 28). 

Of all the energy fuels used in 1970, only hydropower contributes 

no net heat to the biosphere. The reason for this is that hydropower 

begins as solar energy and is converted to hydraulic energy in the 

water cycle. It would degrade to heat whether or not part of it became 

electricity in the process. 

Fossil fuels, of course, also represent stored energy from the sun, 
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but the storage process has occurred slowly over millions of years. The 

rate of release of this stored energy is so rapid when it is burned that 

it amounts to a large net input of heat into the biosphere. For this 

reason, approximately 59.2 x 10̂  ̂Btu of heat were added to the biosphere 

through human energy processing in the United States in 1970. Figure 3.6 

is a useful reference, and offers a quantitative description of the 

entire energy system in the United States today. It also puts various 

fuels and consuming sectors in their proper perspective. 

D. U. S. and World Population Growth 

The birthrate in the U. S. is declining. The historical low, 

recorded during the 1930's, was 18.4 births per 1000, while at the peak 

of the baby boom in 1957 the rate was 25.3 births per 1000. In 1974, it 

stood at only about 14.8, the lowest in U. S. history (32, 33). The birth

rate was 17.7 per thousand people in 1969, while the death rate was 9.5 per 

thousand. Thus, althoû  the birthrate has declined steadily since the 

mid 1950's, as shown in Figure 3.7, it is still considerably greater than 

the death rate (34). 

Another indicator, the total fertility rate, has also reached a 

historical low. This is the sum of the rates at ̂Jhich women, taken in 

groups of 1000 at each of the reproductive ages, bear children in any par

ticular year. In 1974, the rate was decreasing and was down to nearly 

1,800. This figure implies that if all wciasn born in a given year were 

to bear children at that rate over their entire reproductive lives, they 

would eventually bear an average of 1.8 children each. 
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The present low total fertility rate is of special interest because 

it is in the range that, if continued over the long run, would stop U. S. 

population growth or cause it to decline. A group rate of 2.1 children 

per woman is equal to the U. S. replacement rate. That rate would 

produce a stationary population - that is, zero population growth (ZF6) 

in about sixty years or so, if the same level of fertility were to continue 

in the future (32, 33, 34). 

The demographers use "demographic transition" theory to explain what 

happens to population growth as tradition-bound societies become modern

ized. In the first stage, according to this theory, Improved public-

health practices and better nutrition enable people to live longer, 

causing death rates to decline sharply. But, birthrates remain high, 

and hence, the population grows rapidly, m the next stage, the society 

becomes more urban and better educated. This tends to keep children out 

of the work force longer, thus they become more of a cost to the parents 

than a source of income. Moreover, as modernization continues, people 

are able to save more money to provide for the needs of their old age, 

and goveimments may even start public pension systems. These developments 

reduce the need for parents to rely on children for financial support in 

later life. Because of these factors, families have fewer children. 

Unfortunately, the theory is vague about what happens when a demographic 

transition is ccmpleted. Demographers do agree, however, that a low 

birthrate is characteristic of the final stage of the transition. In that 

sense, the U. S. and at least nineteen other developed countries with low 

fertility rates may be nearing the end of their transitions (34). 
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There is a striking difference between U. S. and world population 

growth, which are shown in Tables 3.1, 3.2, and Figure 3.8 and 3.9. The 

rate of population growth in the U. S. has been decreasing during the 

last century, whereas the world population growth rate has been increasing. 

In general, the industrialized countries of the world have had lower 

population growth rates than the less-developed countries in recent years, 

as is shown in Table 3.2 (35). It is apparent that the present rate of 

world population growth cannot be sustained indefinitely. According to 

Starr, environmental or other restrictions will sooner or later cause the 

death rate to increase substantially, and the least developed countries 

will be the first to suffer (11). 

Table 3.1. World population estimates (35) 

Population 
(Millions) 

1 ± X 10 

275 ± 80 

290 Max. 

270 Mln 

295 

310 

350 

493 

694 

887 

1,170 

1,500 

1,550 

Year 

10,000 B.c. 
1 Â.D. 

225 

700 

1000 

1200 

1400 

1650 

1750 

1800 

1850 

1890 

1900 
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Table 3.1. Continued. 

Population 
Year (Millions) 

1925 1,907 

1950 2,497 

1960 2,996 

1965 3,297 

1970 3,655 

1975 4,080 

1980 4,562 

1985 5,096 

1990 5,687 

1995 6,278 

2000 6,919 

Table 3.2 shows some population and economic data for 31 countries 

of the world. The countries are listed in ascending order of GNP per 

capita. The table reveals that the GNP of the entire world is 2.88 tlnœs 

that of the U, So In other words, the U, S, generates 35 percent of all 

the goods, wealth, and services generated in the world per year. 

By an Act of Congress in March, 1970, the U. S. Commission on 

ropulatiofi Geowth and the American Future was established. It was 

charged with the responsibility of sponsoring studies of the broad range 

of problems associated with population growth and their implications for 

America's future. In the commission's report (33), it was concluded 

that 1) No substantial benefit will accrue from the continued growth of 

the U. S. population, 2) A reduction in the growth rate will create 
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Table 3.2. World population data, 1971 (In descending order of GNP per capita) (30) 

GNP per Population Birth Rate Death Rate Population Number of Years 
Countries Capita {10̂ ) per 1000 per 1000 Growth Rate to Double 

(US$) People People Population 

Southwest Africa - 0.6 44 25 2.0 35 

Ethiopia 70 25.6 46 25 2.1 -

China 90 772.9 33 15 1.8 39 

North Vietnam 90 21.6 - - 2.1 33 

India 100 569.5 42 17 2.6 27 

Pakistan 100 141.6 50 18 3.3 21 

South Vietnam 130 18.3 - - 2.1 33 

Syria 210 6.4 47 15 3.3 21 

Brazil 210 95.7 38 10 2.8 25 

Iran 310 29.2 48 18 3.0 24 

Turkey 310 36.5 43 16 2.7 26 

Colombia 310 22.1 44 11 3.4 21 

Cuba 310 8.6 27 8 1.9 37 

Portugal 460 9.6 19.8 10.6 0.7 100 

Greece 740 9 17.4 8.2 0.8 88 

Poland 880 33.3 16.3 8.1 0.9 70 

Libya 1020 1.9 46 16 3.1 23 

USSR 1110 245 17.0 8.1 1.0 70 

Japan 1190 104.7 18.0 7.0 1.1 63 

Italy 1230 54.1 17.6 10.1 0.8 88 
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Table 3.2. Continued. 

GIfP per Population Birth Rate Death Rate Population Number of Years 
Countries Capita jG. per 1000 per 1000 Growth Rate to Double 

(IIS§) People People Population 

Israel 1360 3.0 26 7 2.4 29 

East Germany 1430 16.2 14.0 14.3 0.1 233 

Netherlands 1(520 13.1 19.2 8.4 1.1 63 

Finland 1720 4.7 14.5 'J 9.8 0.4 175 

United Kiiigdom 1790 56.3 16.6 11.9 0.5 140 

West Germany 1970 58.9 15.0 12.0 0.4 117 

Norway 2000 3.9 17.6 9.9 0.9 78 

Canada 2460 21.8 17.6 7.3 1.7 41 

Sweden 3.540 0.8 43.0 7.0 8.2 9 

Kuwait 3540 0.8 43.0 7.0 8.2 99 

United States 3980 207,1 18.2 9.3 1.1 58 

Cumulative World GNP (1968) = $2.30̂ f a: 10̂  ̂

Number Average National GNP = $1206. 

Number Average GNP per capita = $660. 

= 2.88 X (U. S. GNP). 
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important economic benefits, especially if the nation develops policies to 

take advantage of the opportunities for social and economical improvement 

that slower population growth would provide, 3) Population growth is one 

of the major factors increasing the demand for resources and the resulting 

detrimental impact on the environment, 4) An average of two children per 

family will result in zero population growth in the long run. 

The Commission's report includes a graph (Figure 3.10) showing the 

projected future U. S. population assuming the average family has two 

children rather than three, beginning in 1970, The IJ, S. population 

would stabilize in 60 to 70 years if the birthrate were held at about 

2.11 children per woman. 

It is, of course, very unlikely that the birthrate will stay extremely 

close to the replacement level for 60 years; it is more likely to fluc

tuate. But, the goal of zero population growth has been established, and 

the birthrate has declined to the replacement rate in recent years. The 

most reasonable and meaningful forecast of U. S. population growth through 

the next century should be based on a gradually declining growth rate which 

generates a Gompertz curve (See Appendix B). The growth rates shown in 

Table 3.3 generate such a curve. Table 3.4 indicates U. S. population as 

Table 3.3. Projected U. S. population growth rates 

Period 
Approximate Population Growth Rate 

(% per year) 

1950-1960 1.57 Historical 

1960-1970 

1970-1980 

1.31 II 

1.22 Projected 
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Table 3.3. Continued. 

Approximate Population Growth Rate 
Period (% per year) 

1980-1990 1.01 Projected 

1990-2000 0.73 M 

2000-2015 0.68 fl 

2015-2030 0.54 II 

2030-2050 0.23 II 

2050-2070 0.15 If 

2070-2100 0.00 II 

projected using the growth rates in Table 3.3. As can be seen from 

Table 3.4, U. S. population will reach 279 million by the year 2000, 

309 million by the year 2015, 335 million by the year 2030, and 361 

million by the year 2070. This projection of the U. S. population, based 

on what the Commission sees as a desirable and achievable goal, is used in 

the following pages as part of the basis for ân energy forecast. 

Table 3.4. Projected U, S, population using growth rates in Table 3.3 

Year 
population 
(106) Year 

Population 
(106) 

1950 152,271® 2030 335.110 

1955 165.931* 2035 338.982 

1960 180.684* 2040 342.898 

1965 3.94.592* 2045 346.859 

1970 208.020* 2050 350.867 

1975 221.001 2055 353.506 

1980 234.815 2060 356.165 

Ĥistorical values. 
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Table 3.4. Continued. 

Year 
Population 
(10*) Year 

Population 
(106) 

1985 246.915 2065 358.850 

1990 259.638 2070 361.544 

1995 269.254 2075 361.544 

2000 279.226 2080 361.544 

2005 288.850 2085 361.544 

2010 298.805 2090 361.544 

2015 309.104 2095 361.544 

2020 317.540 2100 361.544 

2025 326.207 

E. Energy Forecasts 

A forecast is not the same as a predictionr A prediction implies 

supposed knowledge of what will happen at some time in the future. A 

forecast is much more cautious. It implies that if a variety of conditions 

that hold today continue to hold In the future (including, for example, 

structure of demand and rates of growth), or if these conditions change 

In ways that are specified as part of the forecast, then a certain 

future situation will be the result. In essence, forecasters report 

the probable consequences of present assumptions and present trends. In 

a sense, forecasts are extensions of the past which are based on certain 

assumptions. But, if the assumptions are incorrect, so will the resulting 

forecasts be. Therefore, it is necessary to choose assumptions carefully. 
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bearing in mind that they are the basis for the forecasts. Since 

judgement plays a part In long range forecasting. It Is fruitful to exam

ine forecasts in the same discipline that have been made by others. In 

the energy field, many forecasts have been prepared in recent years. An 

extensive tabulation of these appears in the following pages. 

GNP and energy consumption in the U. S. have Increased at about the 

same rate for many years. For this reason, many energy forecasts have 

been based on the assumption that this relationship will persist. From 

1920 to 1970, the U. S. real GNP, in 1958 dollars, increased from 140 

billion to 720 billion dollars, equivalent to about 3.35 percent growth 

annually. During the same period, energy use grew from 20 x 10̂  ̂Btu to 

68.8 X 10̂  ̂Btu, equivalent to 2.53 percent annual growth. Thus, the 

ratio of energy use to real GNP declined over this 50 year period, as 

shotm in Figure 3.11 (29, 36). However, since 1966, the energy/GNP 

ratio has been climbing. Whether this reflects a changing ratio of 

services to material goods in the GNP, or a reduction in the efficiency 

of energy use In the production of goods, is not yet clear. At any rate, 

the historical decline in the energy/GNP ratio will not necessarily 

continue. In fact, environmental cleanup is likely to consume tremendous 

amounts of energy in the future, yet it will contribute little to the 

GNP, at least as the GNP has historically been measured (37). Thus, many 

of the earlier energy forecasts, which are based on continued growth of 

GNP and a declining energy/GNP ratio, probably predict energy levels in 

the year 2000 which are too low. 

Any attempt to forecast the future growth of energy use requires a 
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Figure 3.11. Historical energy/GNP ratio in the U. S. (28) 
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thorough analysis of the forces which might possibly sustain the historical 

trend or cause it to increase, and of those forces which might retard or 

limit it. However, in attempting to forecast energy growth for three 

decades into the future, it is important to consider the past three 

decades as providing the most relevant portion of historical data. If 

conditions during the next three decades were the same as during the last 

three decades, the energy growth rate would be the same. Since this 

obviously will not be the case, the probable differences must be examined. 

However, the extrapolation of a historical trend can be a valid forecast 

in itself, although perhaps a crude one (38). This initial forecast can 

be improved through qualitative examination of possible accelerating and 

retarding forces. One of the factors which tends to cause the energy 

use growth trend to continue is the expectation of continued population 

growth through the year 2000. As can be seen in Figure 3.10, the popula

tion growth rate will not fall off significantly until about the year 

2000, even if the birthrate remains at the replacement level. But, 

population growth has only been about 1.2 percent per year, while energy 

growth rate was about 3.4 percent during the period from 1940 through 

1970, and has been even higher in the last few years. Thus, population 

growth, in itself, is insufficient to maintain this historical trend in 

energy use growth. 

Many forecasts predict growth in real GNP at an annual rate of 3.5 

to 4 percent through the year 2000 (39, 40). While it is difficult to 

defend this projection scientifically, it is likely that people, govern

ment officials, and industrialists will strive hard to achieve it. Thus, 
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it is reasonable to expect the GNP to increase during the next three 

decades more or less as it did in the past three, 4.2 percent annually 

from 1938 through 1970. However, the historical reduction in the 

energy/GNP ratio will probably not continue. At present, the most rea

sonable expectation may be that this ratio will level out over the next 

30 years (41), whereupon, energy growth would proceed at about the same 

rate as the GNP. 

Energy will gradually become more expensive in the future, ̂ ich is 

a reversal of the historical trend. This will occur primarily for two 

reasons: the cost of fuel production and the cost of environmental pro

tection (43). The price of fuel is increasing because the most accessible 

reserves have been depleted, as they were extracted first. Environmental 

protection, a relatively new aspect of the energy field, is increasing 

the cost of energy because it requires the use of cleaner, more expensive 

fuels. If the energy industry uses the more abundant but dirty fuels, it 

will incur major capital expenses and operating penalties. There is 

no major technical difficulty in meeting environmental standards in the 

next three decades, although short-term schedules for air and water 

pollution control may be unrealistic (44). However, environmental 

protection will significantly raise the cost of energy (37). Ifithin 

the bounds of the elasticity of energy demand, higher prices may discourage 

some of the growth in energy use. Higher cost should also provide an 

impetus to increase the efficiency of energy conversion and energy 

use (45). 

In summary, the factors affecting future energy growth are popula-
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tlon growth, GNP growth, technological developments and environmental 

energy requirements on one hand, and expected hl̂ er energy prices on the 

other. Considering these qualitative factors and the historical trends in 

energy consumption and economic growth, it appears that an annual energy 

growth rate of 3.5 - 4 percent is most likely and quite reasonable for the 

period from 1970 to 2000 (46). This conclusion differs little from the 

energy forecasts of others, as shown in Tables 3.5 and 3.6. Table 3.5 

6 
shows. In 10 Btu, various forecasts of total energy consumption per capita 

for the U, So s while Table 3.6 shows, in 10̂  ̂Btu, total energy consumption 

forecasts for the U. S. Forecasts, in MBtu of upper and lower limits and 

means for total energy consumption per capita for the U. S. are calculated 

and shown in Table 3.7. Several forecasts indicate significantly slower 

future growth, but they were prepared before the upturn in the energy/GN? 

ratio became apparent in the mid-I960's. Other forecasts are rather 

similar, while some predict an even higher future energy growth rate. 

15 15 
The forecasts for the year 2000 range from 105 x 10 to 337 x 10 Btu. 

15 
Based on consumption of 68.8 x 10 Btu in 1970, this represents a range 

of 3.0 to 4.0 percent in the effective annual growth rate. Figure 3.12 

shows the historical growth of energy use in the U. S. and the preferred 

"average" forecast to the year 2000, in addition to the ranges of most 

other forecasts. This forecast has a 3.5 percent compound growth rate. 

As shown in Figures 3.3 and 3.4, electricity consumption has grown 

significantly faster than total energy consumption, accounting for 25 

percent of total energy use in 1970. Table 3.8 shows, in percent, 

forecasts of total energy converted to electricity in the U. S., from 
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Table 3.5. Forecasts of total energy consumption per capita for the U. S. 
in MBtu 

Year 
EÂE USEP USE EUR ETTY 

Year 
Ref. (22) Ref. (145) Ref. (147) Ref. (150) Ref. (1 

1850 102 _ _ - -

1855 103 - - - -

1860 101 - - - -

1865 96 - - - -

1870 99 - - - -

1875 97 - - - -

1880 100 - - - -

1885 99 - - - -

1890 111 - - a -

1895 111 - - - -

1900 126 100 - - -

1905 158 136 - - -

1910 179 160 - - -

1915 177 160 - - -

1920 201 186 - 186 -

1925 193 180 - - -

1930 192 181 - 181 -

1935 161 150 - - -

1940 190 180 - 180 -

1945 233 225 - - -

1950 231 224 225 224 223 
1955 246 240 - 242 239 
1960 - 248 250 250 246 
1965 - 277 - 279 274 
1970 - - 337 335 329 
1975 - - 412 - 371 
1980 - - - - 419 
1985 - - 563 IS 479 
1990 - - - - -

1995 - - - -

2000 - - 720 - 686 
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CGAE EUS FFF PCCP PEC TCUS 
Ref. (61) Ref. (61) Ref. (61) Ref. (61) Ref. (61) Ref. (61) 

22Ô 
251 
284 
320 
357 

250 
260 
295 
337 
386 

291 

332 

439 

288 

336 

474 

358 

499 

268 

366 

524 
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Table 3.6. Total energy consumption forecasts for the U. S. in 10l5 Btu 

Source Ref. No. 1970 1975 1980 1985 1990 2000 2020 2050 

Schurr 150 - 75 - - - - -

Weeks 150 - - 92 - - 187 1110 

McKinney 150 63 72 - - - - -

Landsberg 61 60 - 79 - 102 135 -

S porn 150 - 72 - - - 105 -

S porn 60 69 - - 116 - 155 -

S porn 150 - - 78 - -
= 

Putnam 150 = 63 88 148 -

Teitelbaum 150 - 67 80 - - n - -

Searly 150 62 73 86 - 121 170 -

Jones 162 70 86 105 130 - - -

Lasky 150 - - 82 - - - -

Lamb 150 60 68 78 = 
- -

Vogely 61 - - 86 - - - -

NAE 41 69 - 102 - 151 223 -

CGAEM 61 64 80 98 120 - - -

EUS 61 61 75 93 118 - - - -

NFES 61 - - 82 - - - -

RAF 61 60 - 79 - - 135 -

PEC 61 - - 86 - - - -

ER 61 - - 61 - - - -

OEUS - - - 97 - - - -

US? 61 - - 88 - - - -

EMUS 61 64 76 88 - - 169 -

PCCP 61 - - 91 - - 155 -

FFF 61 - - 86 - . - 170 - -

TCUSEC 61 - - 90 - - 174 -

B(M 41 - - - - - 168 -

Starr 11 - - - - - 168 -

NPC 18 68 - 103 125 - mm — -
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Table 3.6. Continued. 

Source Réf. No. 1970 1975 1980 1985 1990 2000 2020 2050 

White 61 - - - - - 170 - -

EBASCO 23 67 - 104 - - - - -

BATTELLE 61 - - - - - 170 - -

AEC 150 - - 82 - - 135 207 347 

AEC 150 - - 80 - - 130 210 -

Vogely 150 - 88 - - - - - -

Vogely 163 - - 84 — - 159 - -

E. World 150 - 81 - - - 125 - -

Dole 155 70 - 98 - 130 - - -

Ritchings 158 - 80 - 110 - - - -

Nassikas 36 - 95 - - 140 - - -

Laird 36 - - - - - - - -

Motton 36 69 = 
- 133 - 192 - -

GCG 62 67 - 115 - 195 337 - -

H. & H. 10 69 - 95-105 - - 177-210 - -

USET 17 - 80 96 117 - 192 - -

USE 147 69 89 - 133 - 192 - -

Landsberg 150 - - 84 - - 138 - -

Searle 150 - - 86 - - 178 - -

RPF 150 - 75 - - - - - -

EBASCO 150 - 72 - - - - - -

RFF 150 - - 79 - - - - -

PAP 151 - - 87 - - - - -

SRI 151 - - 92 - - - - -

FNCB 151 - 87 - - - - -

PIR 151 - - 92 - - - - -

HO 151 - - 97 - - - - -

Mills 162 66 77 89 - - 163 - -

DOI 61 - - 84 - - 159 - -

Shaw 152 - - 80 - - 131 - -
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Table 3.6. Continued. 

Source Réf. No. 1970 1975 1980 1985 1990 2000 2020 2050 

Perry 

Nassikas 

DOI 

DDI 

Evans 

Weeks 

TE 

McKinney 

Schurr 

TE 

RANGE: 

AVERAGE: 

152 

162 

150 

150 

161 

150 

150 

150 

150 

150 

65 

66 

60-
70 

63-
95 

95 - 125 165 

95 - 140 

73 123 - 440 

82 160 - 750 

90 - 120 150 

90 - - 180 - -

31 — — — — — 

88 

81 — — — — — 

61- 110- 102- 105- 207- 347-
115 133 195 337 210 1110 

65.6 77.2 88.2 122.4 136.0 160.4 208.5 661.8 
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Table 3.7. Upper and lower limits and mean for total energy consumption 
per capita forecasts for the U. S. in MBtu 

Year High Mean Low 

1850 102 102.0 102 

1855 103 103.0 103 

1860 101 101.0 101 

1865 96 96.0 96 

1870 99 99.0 99 

1875 97 97.0 97 

1880 100 100.0 100 

1885 99 99.0 99 

1890 111 111.0 111 

1895 111 111.0 111 

1900 126 113.0 100 

1305 158 147.0 136 

1910 179 170.0 160 

1915 177 168.5 160 

1920 201 191.0 186 

1925 193 186.5 180 

1930 192 184.6 181 

1935 161 155.5 150 

1940 190 183.3 180 

1945 233 229.0 225 

1950 231 225.4 223 

1955 246 241=8 239 

1960 268 252.4 246 

1965 279 259.7 220 

1970 337 298.7 251 

1975 412 340.5 295 

1980 419 352.6 320 

Comment 

Historical 

Fore as ted 
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Year High Mean Low Comment 

1985 563 446.3 357 Forecasted 

1990 - - " 

1995 . " 

2000 720 557.0 439 " 
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Figure 3.12. Historical and projected energy consumption in the U. S. 
(See Table 3.6) 
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Table 3.8. Forecasts of total energy converted to electricity in the U. S. 
in percent 

Source Ref. No. 1970 1975 1980 1985 1990 2000 

EUS 61 38 

FPC 65 26 41 

WH 31 25 35 50 

USET 17 28 31 35 42 

Sporn 60 35 53 

GCG 62 24 29 37 

EBftSCO 23 25 29 

NAE 41 25 33 42 46 

Starr 11 25 38 

CMB 18 25 33 37 

NPC 23 25 32 36 

RANGE: 

MEAN: 

24-26 28 29-35 29-38 41-42 38-53 

25.0 28.0 32.2 35.0 44.3 43.2 
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1970 to the year 2000. The ranges of the forecasts and the "average" 

forecast are also shown in this table. In order to find the curve best 

fitted to this "average" forecast, a number of regression models were 

tested. The polynomial regression model of 

TFC = bg + b̂ y + b̂ ŷ  + e (3.1) 

proved to be the best with a correlation coefficient of 0.980 and 

regression coefficients b̂  = 123677.686, b̂  = -125.807, and b̂  = 0.0319. 

Use of analysis of variance to test the null hypothesis of 

®0* ~ ̂ jO (3«2) 

* ̂ jO 

at the 0.05 level of significance, resulted in sound rejection of the 

hypothesis. Table 3.9 illustrates the analysis of variance. According 

to this regression analysiŝ  electricity production will account for 

39 percent of the total eaergy use by the year 2000. The results are 

shown in Tables 3.17 aad 3.21. 

Table 3.9. Analysis of variance table for the null hypothesis 

Source of Sum of Degrees of Mean Computed Critical 
Variation Squares Freedom Square f(2,n-3) fg Qg(2,n-3) 

Regression 216.895 2 108.447 49.473 9.55 

Error . 4.384 2 2.192 

Total 221.280 4 
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In the past, electric energy and the electric energy industry have 

grown very rapidly because electric energy was convenient, efficient, 

clean, flexible, and inexpensive at the point of use. Fuel costs were 

not a dominant factor affecting this growth. But, in the future this 

situation will be totally different. In 1972, fuel costs were already 

80 percent of the annual production costs, as can be seen from Table 3.10 

and Figure 3.13. 

Table 3.10. Weighted average annual production costs for fossil-fueled 
electric plants, in mills per kWh (43) 

Year Operation and 
Maintenance 

Fuel Total 

1958 0.91 2.94 3.85 

1959 0.85 2.82 3.67 

1960 0.85 2.81 3.66 

1961 0.81 2.78 3.59 

1962 0.79 2.75 3.54 

1963 0.75 2.66 3.41 

1964 0.74 2.64 3.38 

1965 0.75 2.60 3.35 

1966 0.73 2.61 3.34 

1967 0.77 2.65 3.42 

1968 0.75 2.68 3.43 

1969 0.76 2.77 3.53 

1970 0.83 3.15 3.98 

1971 0.94 3.77 4.71 

1972 0.99 4.06 5.05 
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Figure 3.13. Weî tecl average annual production costs for fossil fueled electric plants (See 
Table 3.10) 



www.manaraa.com

60 

Table 3.11 and Figure 3.14 show the weighted average fossil fuel 

costs, "as burned", for electric utility steam-electric generation from 

1962 through 1972. 

Table 3.11. The weighted average fuel costs, for electric utilities, 
in cents per MBtu (43) 

Year Coal Gas Oil Weighted 
Average 

1962 25.6 26.4 34.5 26.5 

1963 25.0 25.5 33.5 25.8 

1964 24.5 25.4 32.7 25.3 

1965 24.4 25.0 33.1 25.2 

1966 24.7 25.0 32.4 25.4 

1967 25.2 24.7 32.2 24.7 

1968 25.5 25.1 32.8 26.1 

1969 26.6 25.4 31.9 26.9 

1970 31.1 27.0 36.6 30.7 

1971 36.0 25.0 51.5 36.4 

1972 38.0 30.3 58 a 8 39.9 

Having remained stable since the end of World War II, the average 

price for fuel in the U, S, suddenly started to increase in 1969, long 

before the Arab oil embargoj in concert with inflation: According to 

the Edison Electric Institute, the fuel cost per kWh in the U. S. in 

1975 will be more than double its 1969 level. Therefore, rising fuel 

costs, though clearly a significant strain on the financial structures 

of the public utilities, will eventually, and sometimes immediately, be 
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Figure 3.14. Weighted average fossil fuel costs for electric utilities 
(See Table 3.11) 
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passed on to the consumer In the future, which may, in turn, affect the 

growth of electrical energy consumption. Far more dangerous in the long 

run are four other factors: 1) the effect of the high cost of money in 

the U. S. on capacity-expansion funding, whether it is for nuclear or 

conventional technology, 2) inflation-whipped equipment and labor costs, 

3) the effect of U. S. energy conservation practices on utility revenues, 

and 4) increasing environmental expenses. 

Nevertheless, increasing affluence and higher living standards 

will lead to increased ownership of home appliances, such as air con

ditioners, dishwashers, compactors, self-defrosting refrigerators, and 

color televisions. Thus, the electricity consumption of the consumer 

sector is likely to continue to increase in the future. 

In 1970 the u. S. consumed 1,550 billion kWus of electrical 

energy. Forecasters generally agree that the demand for electrical 

energy will continue to increase at nearly constant compound growth rates 

for the rest of the century. Table 3.12 shows a survey of electrical 

energy forecasts for the U. S. In order to find the curve best fitted 

to the "average" forecast shown in Table 3.12, a number of regression 

models were tested. The polynomial regression model of 

TFC = 269357.336 - 496.998y + 0=183ŷ  + e (3.3) 

proved to be the best, with a correlation coefficient of 0.992. The 

results of the regression analysis are shown in Tables 3.17 and 3.21. 

In 1973, the electrical power peak load for the U. S. was 343,900 MW 

(43). Table 3.13 shows a number of electrical power peak load forecasts 
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Table 3.12. Survey of electrical energy forecasts for the U. S. in 10 kWh 

Û 
lîlectric Energy Consumption (10 kWh) 

Source Ref. No. 1970 1975 1980 1985 1990 2000 2020 2050 

DDI 61. 1522 2063 2729 - - - - -

AEG 150 - - 2700 - - 8000 -

Senate 150 - - 2700 - - — — -

FPC 150 1484 2024 2693 - - — — -

TE 61 1448 1995 2581 3363 - — — -

BCM 150 - r 2739 - - - - -

Sartorius 61 1323 1885 2740 3905 - - - -

Nathan 61 - - 2641 - - 5874 -

E. World 150 1500 2026 2757 3704 - — ' — -

TE 150 - - 2760 - - - - -

FPC 150 - - 2990 - - — — -

RFF 150 - - 2300 - - - - -

Spom 150 - - 2800 - - - -

Schurr 150 - 1966 2300 - - - — -

Spom 150 - 2000 3000 - - - 6000 -

Spom 150 - 2160 2820 - - 7000 -

Spom 60 1529 - - 4000 - 8640 -

FPC 41 1535 - 3075 - 5828 10,000 -

NÂE 41 1638 - 3202 - 5978 10,150 -

PCCP 61 - - 2641 - - 5870 -

DCC 63 1400 - - - - 10,000 -
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Table 3.12. Continued. 

Electric Energy Consumption (10̂  kWh) 
Source Re£. No. 1970 1975 1980 1985 1990 2000 2020 2050 

GCG 62 1400 - - - - 12,000 - -

WH 31 - - 3085 - 5700 - -

EW 64 1391 - 2804 3820 5380 - - -

USE 147 - - - - - 10,677 - -

USET 17 - 2130 3000 4140 - 9010 - -

WH 150 1489 - 2626 - - - - -

EEI 150 1481 - 2795 - - 8000 - -

Lamb 150 1450 - 2800 - - - - -

AEC 150 - - 2857 - - 9000 - -

E. World 150 - - 3315 - - — - -

Landsberg 150 1780 - 3088 - 4882 7767 - -

WE 164 1302 - 2818 - 4813 8125 - -

FPC 156 1522 2180 3075 4246 5828 — - -

EPS 149 1550 2272 - - - - - -

EWF 154 1540 2227 3200 4474 - — - -

EWF 153 1497 2103 2927 4041 - - -

AEC 160 - - 2700 - 4800 8000 12,500 18,500 

FPC 160 - - 2700 - - 7100 - -

Ritchings 158 1500 2020 2750 3700 - - - -

EEIB 148 1527 - - - - — - -

Vogely 158 - - 2731 - - 9070 - -
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Table 3.12. Continued.. 

Electric Energy Consumption (10̂  kWh) 
Source Réf. Ho. 1970 1975 1980 1985 1990 2000 2020 2050 

Star 159 - - - - - 9000 - -

Felix 159 - - 3300 - 5700 8850 - 18,950 

Mills 157 - - - - - 9112 - -

RANGE: 

1323- 1885- 2300- 3363- 4813- 5874- 12,500- 18,500-
1638 2272 3300 '4474 5978 12,000 12,500 18,950 

MEAN: 

1491.3 2075.0 2830.8 3939.3 5434.3 8511.1 12,500.0 18,725.0 
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Table 3.13. Electrical power peak load forecasts for the U. S. in 10̂  mw 

Peak Load (10̂  m) 
Source Ref. No. 1970 1975 1980 1985 1990 

EW 150 262 360 490 650 

FPC 150 271 370 494 

EEI 150 265 501 

EEIB 148 276 

PS 149 275 423 

FPC 150 277 396 554 766 1051 

EWF 154 275 390 549 769 

Etre" 153 265 370 510 700 

WH 164 275 390 560 790 1045 

RANGE: 

262-277 360-423 490-560 650-790 1051-1045 

MEAN: 271.2 385.6 522.6 735.0 1048.0 
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for the U. S, In order to find the curve best fitted to the average 

forecast shown in Table 3.13, several regression models were tested. 

The logarithmic regression model of 

TFC . (3.4) 

proved to be the best, with a correlation coefficient of 0.999. The 

results of the regression analysis are shown in Tables 3.17 and 3.21. 

Table 3.14 shows, in percent, several forecasts of what the primary 

energy sources for electric power generation in the U. S. will be in 

the future. Forecasters agree that the primary energy sources for electric 

power generation in the U. S. by the year 2000 will be nuclear energy and 

coal. Oil, gas, and hydro will comprise only a small proportion of the 

sources which will be used for electrical energy generation. 

At present, the transportation sector is a relatively minor user 

of electric energy, within t570 decades zass transpcrtatlo-i 

systems for short and medium distance travel in and near urban areas 

will probably become major electricity users (45, 47). During the years 

from 1985 to 2000, there may also be an increasing number of electric 

cars, which could become significant electricity users. The influence 

of electric vehicles on the power system load factor is discussed in 

Appendix C. 

The most dramatic and direct challenge to increasing energy con

sumption has emerged from confrontation between the electric utility 

industry and environmentalists. Environmental concerns are likely to 

be considered far more important than they have been in the past in 

future decision-making that affects the energy supply. Environmentalists 
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Table 3.14. Forecast of primary sources for electric power generation in 
the U. S. in percent 

Source Ref. No. Year Coal Oil Gas Hydro Nuclear 

CMS 18 1965 55.0 6.0 21.0 18.0 0.0 

1970 49.0 11.0 24.0 15.0 1.0 

1980 35.0 2.0 14.0 13.0 36.0 

1985 29.0 17.0 11.0 8.0 35.0 

GCG 62 1970 49.2 13.7 21.4 14.4 1.3 

1980 21.2 16.7 10.6 . 9.1 42.4 

2000 3.2 3.2 1.6 4.0 88.0 

Spom 60 1960 53.4 6.0 21.2 19.4 -

1970 46.5 11.8 24.2 16.1 1.4 

1985 40.0 10.1 9.2 6.9 33.8 

2000 19.4 24.7 4.2 3.7 48.0 

EBASCO 23 1980 34.7 26.7 2.7 7.7 28.2 

WH 31 1990 35.0 9.0 2.0 - 54.0 

Nassikas 36 1970 55.0 14.6 27.6 - 2.8 

1980 41.9 12.1 14.4 - 31.6 

1990 28.7 6.8 9.4 - 55.1 

MEM; 

1960 53.4 6.0 21.2 19.4 -

1965 55.0 6.0 21.0 18.0 0.0 

1970 48.9 12.0 22.3 15.2 1.6 

1980 33.2 14.4 10.4 9.9 32.1 

1985 34.5 13.6 10.1 7.4 34.4 

1990 31.8 7.9 5.7 - 54.6 

2000 19.2 6.0 2.9 3.9 68.0 
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strongly criticized electric power companies, no doubt partly because the 

companies are conspicuous. But, actually the increased environmental 

emphasis will probably accelerate growth of the electrical share of the 

market. There are several reasons why this is likely: fuel combustion 

sites are often far from population centers; few large Installations can 

more economically control combustion by products than can many smaller 

ones; the nuclear energy industry is growing very rapidly. Nuclear energy 

may meet 25 percent of the U. S. energy needs by the year 2000, partly 

because nuclear energy is more readily converted to electrical energy 

than are other energy sources. 

Because of these factors, the next three decades will probably 

see electric power's share of the energy market grow faster than it has 

in past years. If past trends were extrapolated without modification, a 

share of 38 to 53 percent in the year 2000 would be forecasted. Hence, a 

target figure of 45 percent seems reasonable and justified. 

A dramatic increase in fuel conversion efficiency has been achieved 

in this century by the electric power industry. In 1900, less than 5 

percent of the energy in the fuel was converted to electricity (the 

early-day turbine-generators, with their steam supplied by coal-fired 

boilers, required approximately 6 pounds of coal to produce 1 kWh). 

Today the average efficiency is about 32 percent. This figure may 

reach about 36 percent by the year 2000. Table 3.15 shows historical and 

projected heat rates for steam-electric generating units in the U. S., 

in Btu per kWh. Figure 3.15 shows that heat rates for the most efficient 

fossil-fueled steam-electric generating units decreased until 1950, and 



www.manaraa.com

70 

Table 3.15. Historical and projected heat rates for steam-electric gene
rating units In the U. S., in Btu/kWh (28, 40) 

Year 
Heat 
Rate 

Comment Year Heat 
Bate 

Comment 

1925 25,000 Historical 1961 10,552 Historical 

1930 19,800 II 1962 10,493 tf 

1935 17,850 II 1963 10,438 II 

1936 17,800 II 1964 10,407 II 

1937 17,850 II 1965 10,384 It 

1938 17,450 II 1966 10,399 II 

1939 16,700 II 1967 10,396 II 

1940 16,400 II 1968 10,371 ir 

1941 16,550 II 1969 10,457 II 

1942 16,100 II 1970 10,508 II 

1943 16,000 II 1971 10,536 If 

1944 15,850 i« 1972 10,479 II 

1945 15,800 II 1973 10,429 It 

1946 15,700 II 1975 8,900 Projected 

1947 15,600 11 1980 8,600 II 

1948 15,738 II 1985 8,300 II 

1949 15,033 II 1990 8,050 II 

1950 14,030 II 1995 7,850 II 

1951 13,641 II 2000 7,750 18 

1952 13,361 It 

1953 12,889 II 

1954 12,180 II 

1955 11,699 II 

1956 11,645 II 

1957 11,365 II 

1958 11,090 II 

1959 10,879 II 

1960 10,701 II 



www.manaraa.com

18-

_g 
# N. OCM 

se»-

CO 

wS 
H-in. 
CE— 
az 

0:0 
ujr; 
ZfJ. 
to 

s 
O) 

s 

PROJECTED HISTORICAL 

NPC 
~TG 

1 1 1 —I 1 
192.00 iSij.OQ 135.CO I SB.00 200.00 202.00 

TEAR 

-T 1 1 1 
204.00 206.00 208.00 210.00 

txlO' I 

Figure 3.15. Historical and projected heat; rates for steam-electric generating units in the U. S. 
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then leveled off. Heat rates, as projected by the Federal Power 

Commission, through the year 2000 are also shown (designated by NPC) 

in this figure. In order to find the curve best fitted to the histori

cally declining heat rates, a number of regression models were tested. 

The polynomial regression model of 

TFC = 25.56.692 - 470.324y + 4.675ŷ  - 0.014ŷ  + e (3.5) 

proved to be the best, with a correlation coefficient of 0.947. Use of 

analysis of variance to test die null hypothesis of 

Hq: bj = b.Q (3.6) 

ĵ ̂  ̂ jO 

at the 0.05 level of significance, resulted in sound rejection of the 

hypothesis. Table 3.16 illustrates the analysis of variance. The 

forecasted heat rates, as calculated using this regression analysis, are 

plotted and designated by TG in Figure 3.15, and are also shown in Tables 

3.17 and 3.21. 

Table 3.16. Analysis of variance table for the null hypothesis 

Source of Sum of Degrees of Mean Computed Critical 
Variation Squares Freedom Square f(3,n-3) fg Qg(3,n-3) 

Regression 577102821.571 3 192367607.190 253.685 2.83 

Error 31848199.646 42 

Total 608951021.217 45 
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Table 3.17. Electrical energy forecast for the U. S. for the years from 1970 to 2000 

Electrical Energy 
Total Energy 

Year Consumption 
(10l5 Btu> 

Percentage of 
Total Energy 
Consum])tion 

Heat Rate 
(Btu/lâJh) 

Produced 
Energy 
(lo9 kWh) 

Peak Loai 
(103 MW) 

1970 68.8 25.0 10508.0 1550,0 276.9 

1975 73.9 28.0 10452.0 1979.7 364.5 

1980 87.9 32.1 10402.0 2712.5 491.5 

1985 103.6 35.0 10123.0 3581.9 649.0 

1990 121.9 44.2 9951.0 5414.5 965.8 

1995 141.6 44.7 9712.0 6517.2 1144.5 

2000 164.5 45.0 9557.0 7745.6 1360.3 
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The curve derived as a result of the regression analysis appears to 

be more reasonable than the Federal Power Commission's heat rate projec

tion curve. The reason for this is that the rate of decline in average 

heat rates will not be as rapid as in the past until improved alloys 

are developed to permit higher steam pressures and temperatures. Apart 

from steam conditions, recent improvements in both turbines and boilers 

have contributed to someiAat lower heat rates. Increases in unit size 

have also provided some advances, but better metals and higher throttle 

temperatures offer the best potential for enabling further major improve

ments. As larger and more efficient units are placed in service and some 

of the older and very inefficient capacity is retired or placed in cold 

standby, the average heat rate can be expected to improve. However, 

such improvement would tend to be offset by environmental control factors, 

including the increasing use of residual oil to meet sulfur oxide emission 

regulations, the addition of precipitators and scrubber facilities, and 

greater use of cooling towers rather than once-through cooling. Other 

offsetting factors would be the continuing decrease in the quality of 

coal and the operation of some inefficient units at high plant factors 

because of delayed installation of more efficient new capacity-

Forecasts of total U. S. energy requirements and electric power 

requirements to the year 2000 are summarized in Table 3.17. Data from 

1970 are included for reference (28, 36, 49). Only a small improvement 

in the annual load factor̂  was assumed in making the load forecast. 

Ânnual Load Factor = (Wh Produced/8760 x (kW Peak Load)) 



www.manaraa.com

75 

F. Future Society 

Although the birthrate has decreased to the replacement level, the 

U. S. population probably will not stabilize for 60 to 70 years. A 

rapidly growing energy supply will be needed to provide for increasing 

transportation needs, waste recycling, environmental improvement, domestic 

comforts, and the growing demand for goods and services (8). 

Even lAen population growth does slow down, growth in the GNP 

will probably not be significantly slowed, since industrial systems are 

becoming more automated (33). Hence, growth in GNP per capita would be 

speeded by a decrease in population growth. The same is true of per 

capita income, which has historically grown proportionately more than 

the population. If population growth ceases, even faster growth of per 

capita income is likely. This could happen sometime after the year 

2000, provided the population growth projection is fairly accurate and 

zero population growth is ultimately achieved. 

In "Future Shock," Toff1er predicts that in the "super industrial" 

American society of tomorrow, service industries will ultimately become 

"experimental industries" (52). (Service industries include dry cleaners, 

hospitals, restaurants, etc.) Han's societies have successively been 

based on hunting, then agricultures and now industry. The present day 

industrial society is now changing to a post-industrial society. Man 

at first was satisfied with basic food and shelter; then he wanted material 

goods; now he wants innumerable goods and services. Contrary to traditional 

economic thoû t, Toff 1er envisions that man's desire for material goods 

will become saturated, whereupon he will desire to "consume" experiences. 
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rather than material goods. 

In the physical world, no quantity can grow exponentially indefinitely 

without being limited by some force or another (See Appendix B). Toffler's 

thinking is consistent with this fact. Although the production of material 

goods has increased exponentially for an extended period of time, its 

historical curve will eventually resemble the Gompertz curve (Figure B.l, 

Appendix B). This will occur primarily because human goals will change. 

Man will be fairly content with his abundant food supply, his shelter, 

and his material goods, and so will embark on new pursuits. The change 

in the rate of growth of material goods production will come gradually, 

though, not suddenly because resources are exhausted, as in the model of 

the jar and the fruit flies (See Appendix B). 

This scenario is not feasible for the 20th century. Americans are 

not nearly satisfied with the goods and services they possess, in spite 

of the fact that they have more than anyone else in the world, And. 

there will continue to be poverty in this country, at least for awhile 

(54). Because different people are satisfied with different degrees of 

material comfort, there is no way of knowing what degree of comfort 

will eventually satisfy most people. But, certainly poverty must be 

eliminated and s much higher average standard of living must be attained 

before people will be satisfied with the material goods that they have. 

This may be more possible when the population begins to stabilise, since 

per capita income or the average living standard could then increase 

more rapidly. When this country no longer has the worries of providing 

basic necessities to a growing population, it can then make great strides 
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in eliminating poverty and establishing a stable affluent society which 

will begin to strive for nonmaterial goals. 

In an industrial society, goods and services cannot be produced 

and physical comforts cannot be provided on a large scale without energy 

consumption. Thus, stabilization of demand for material comfort and 

goods would cause growth of energy consumption per capita to decrease 

and stabilize. Such reasoning is as valid for any industrial nation 

as it is for the U. S. But, there are many poor countries in the world 

where people are starving and it is these same countries where population 

growth rates are the highest (See Table 3.2). This situation inhibits 

any kind of progress in these countries and also increases the threat 

of war because of the huge gap between them and the industrialized na

tions. The industrialized societies can promote world stability by 

helping the developing nations to solve their problems, which are made 

worse by rapid population growth (54). 

G, Energy Demand Forecast for the 21st Century 

The scenario presented in the previous section is highly subjective 

and cannot really be quantitatively analyzed. There is no way to predict 

when or at what level people's demand for energy will be satisfied. But, 

as has been discussed, this will probably not happen until the population 

begins to stabilize which will be after the turn of the century. In 

theory, it will happen after population growth slows, because it will 

take time for the per capita level of material wealth to increase, which 

will be a result of slower population growth. Considering anticipated 
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growth of human knowledge and probable future progress, the demand for 

energy should be satisfied in the 21st century. 

Since a crude model is better than no model at all, it was postu

lated that per capita growth of energy use will follow a Gompertz 

curve defined by the growth rates in Table 3.18. The probable total 

energy consumption in the U. S. through the next century was forecasted, 

as shown in Table 3.19, using this curve and the projected population 

growth rates in Table 3.3. Energy was assumed to be available, but at 

a price reflecting the cost of environmental protection and byproduct 

capture and recycling. The U. S. population, energy use per capita, 

and the resulting annual rate of energy use are plotted to the year 

2000 in Figure 3.16. 

Table 3.18. Annual growth rate of total energy consumption 

Period Growth Rate of Btu/Capita 
(% per year) 

1950-1970 2.45 

1970-2030 2.29 

2030-2040 2.0 

2040-2050 1.6 

2050=2060 1.4 

2060-2070 1.0 

2070-2080 0.7 

2080-2090 0.5 

2090-2100 0.2 

In this projection, which is based on the scenario of the future 
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Table 3.19. Forecasted total energy consumption for the U. S. 

Year 
Consumption/Capita 

(106 Btu) 
Population 
(106) 

Total Energy Consumption 
(10l2 Btu) 

* * * 
1950 225.4 152.3 34,328.4 

* * * 
1955 241.8 165.9 40,114.6 

* * * 
1960 252.4 180.7 45,608.7 

* * * 
1965 259.7 194.6 50,537.6 

* * * 
1970 298.7 208.0 65,600.0 

1975 334.5 221.0 73,924.5 

1980 374.6 234.8 87,956.1 

1985 419.5 246.9 103,574.6 

1990 469.8 259.6 121,960.1 

1995 526.1 269.3 141,678.7 

2000 589.1 279.2 164,476.7 

2005 659,8 288.9 190,616.2 

2010 738.8 298.8 220,753.4 

2015 827.4 309.1 255,749.3 

2020 926.6 317.5 294,195.5 

2025 1037.7 326.2 338,497.7 

2030 1162.0 335.1 389,386.2 

2035 1283.0 339.0 434,937.0 

2040 1416.5 342.9 485,717.9 

2045 1533.5 346.9 531,971.2 

2050 1660.2 350.9 582,564.2 

2055 1779.7 353.5 629,124.0 

2060 1907.9 356.2 679,594.0 

2065 2005.2 . 358.9 719,666.3 

2070 2107.5 361.5 761,861.3 

2075 2182.3 361.5 788,901.5 

2080 2259.8 361.5 816,917.7 

2085 2316.8 361.5 837,523.2 

2090 2375.3 361.5 858,671.0 
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table 3.19. Continued. 

Year 
Consumption/Capita 

(106 Btu) 
Population 
(106) 

Total Energv Consumption 
(1012 Btu) 

2095 2423.3 361.5 876,023.0 

2100 2423.3 361.5 876,023.0 

Ĥistorical values 



www.manaraa.com

81 

10000 

9000 

8000 

7000 

1000 

800 

6000 600 

5000 

400 4000 

àia<aXJLJSl!.(itlQ' 
(KIGMTŜ L̂E) 
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Figure 3.16. Projection of U. S. population, energy use per capita and 
total energy use to the year 2100 (See Table 3.19) 
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presented in the previous section, annual U. S. energy consumption by the 

18 
end of the 21st century is approaching 10 Btu and has stopped increas

ing. This quantitative projection is, however, no better than the theory 

on which it is based, which may be incorrect. Hence, this projection 

of energy consumption in the 21st century as well as any succeeding analy

sis, must be viewed in context of the scenario from which it derives. 

For a point of reference in evaluating these energy projections, 

it is helpful to remember that the total energy consumption in the U. S. 

from 1850=1970 was about 2.34 Q (See Section B). The integral of the 

total energy curve in Figure 3.16, which was calculated using the 

computer program given in Appendix D, from 1970 to any given year, is 

shown in Figure 3.17. Table 3.20 represents the cumulative energy 

consumption from 1970 to the given date. From this table one can quickly 

determine the energy requirement for any given interval, based on this 

energy forecast. For example, in the period from the year 2000 to 2015, 

18 
(6.896624 - 3.230753) or 3.665871 x 10 Btu will be required. In 

other words, more energy is projected to be consumed in this 15 year 

period than in the 120 year period from 1850 to 1970. These figures 

are used as part of the basis for a fuel forecast in Chapter IV. 

Based on broad assumptions about expected socioeconomic conditions 

and trends, U. S. energy needs have been projected to the year 2000. 

The type of energy, which this will be after the year 2000, has not been 

considered, although 45 percent of it is expected to be electric energy. 

This figure was derived through extrapolation of the historical trend 

as well as judgment, and agrees reasonably well with other forecasts, 
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Figure 3.17. Cumulative total energy consumption in the U. S. from 
the year 1970 to the year 2000 (See Table 3.20) 
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Table 3.20. Forecasted cumulative total energy consumption in the U. S. 

Interval Cumulative Energy 
(From 1970 to the year) Consumption 

(10̂ ® Btu) 

1975 0.340537 

1980 0.768476 

1985 0.882206 

1990 1.808833 

1995 3.030655 

2000 3.230753 

2005 4.680992 

2010 5.143578 

2015 6.896624 

2020 7.706822 

2025 9.848339 

2030 11.102776 

2035 13.733304 

2040 15.460862 

2045 18.582938 

2050 20.787807 

2055 24.401858 

2060 27,085564 

2065 31.180468 

2070 34.285765 

2075 38.773823 

2080 42.176407 

2085 46,930649 

2090 50.552543 

2095 55.496512 

2100 59.225771 
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as shown in Table 3.8. 

Considering the energy needs and available fuels that are fore

casted for the next century, energy is expected to be increasingly 

converted to electricity after the year 2000. By the early part of the 

21st century, the U. S. will be using most of its energy as electricity, 

although about 15 percent of the energy consumption is expected to 

remain nonelectric. Nonelectric energy would include, for example, 

liquid fuel for aircraft, rockets, and land vehicles, gaseus fuel for 

specialized applications, and fuel used for nonenergy purposes. In 

Figure 3.18, an attempt has been made to quantify the portions of energy 

that will be used in various forms in the future, considering the 

forecasts of energy needs to the year 2000 and the huge energy needs 

expected in the early part of the 21st century. The means by which 

this was done is discussed in Chapter IV. In Table 3.21 some forecasts 

of electric energy production in the 21st century are presented, which 

are based on the data in Figure 3.16 and 3.18. In calculating the 

heat rates it was assumed that power plant efficiencies would gradually 

improve. In the 21st century, nuclear fission plants will operate at 

efficiencies of up to 35 to 40 percent, and coal-fueled plants will 

operate at efficiencies approaching 40 to 45 percent. Nuclear fusion 

plants might be 45 to 50 percent efficient (10). 
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Table 3.21. Electrical energy forecast for the U, S. for the 21st century 

Electrical Energy 
Total Energy 

Year Consumption 
(10l5 Btu) 

Percentage of 
Total Energy 
Consumption 

Heat Rate 
(Btu/kWli) 

Plant 
Efficiency 
(%) 

Produced 
Energy 

(10l2 kWh) 

Peak Loai 
(10° MW) 

2000 164.5 45.0 9557.0 35.7 7.745 1.360 

2015 255.7 72.0 9001.0 37.9 20.453 3.537 

2030 389.4 81.0 8550.0 39.9 36.890 6.285 

2050 582.6 82.0 8124.0 42.0 58.805 9.872 

2070 761.8 83.0 7582.0 45.0 83.394 13.770 

2100 876.0 85.0 7108.0 48.0 104.755 17.083 
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IV. ENERGY SUPPLY PROBLEM 

In Chapter III, only the demand side of the energy dilemma was 

discussed. In this chapter, the supply side will be emphasized: future 

energy resources will be reviewed, supply projections developed for the 

U. S., and some energy related issues will be discussed in light of 

projections. The U. S. has been gifted with a substantial share of the 

earth's fossil fuels (88). The actual amount of fossil fuel that 

exists is, of course, unknown, since the earth cannot be x-rayed and 

its exact composition assessed. Therefore, in this study estimates 

made by experts who render opinions on the extent of the earth's re

sources based on their geological knowledge and on exploratory work 

will be used. 

A. Developments in Fuel Consumption 

Figure 4.1 shows the developments in fuel consumption in the U. S. 

from 1850 through 1970 (11). As can be seen from the figure, the use 

of coal increased rapidly after 1850 and coal became the dominant energy 

source during the years from approximately 1870 to 1930. Its importance 

declined somewhat thereafter, and in 1970 it supplied only about 20 

percent of the U. 5. energy requirement. Some oil was used before 1900 

and during the early part of this century, but only on a small scale 

until about 1920, when it began to replace coal for some purposes. 

By 1970, about 44 percent of the primary fuel used was oil, about 23 

percent of which was imported (23, 31, 87). Use of natural gas has 

also increased in a relatively short time. It became a significant 
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Figure 4.1. Historical U. S. consumption of energy resources (11) 
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primary fuel in the 1940* 8 ,  and has been a major source of energy evfer 

since. In 1970, about 32 percent of all energy expenditures were for 

natural gas. Hydro energy has been used since about 1890, but it has 

never supplied more than about 4 percent of the U. S. energy require

ment, and will never be a major energy source. Nuclear reactors met about 

0.3 percent of the energy need in 1970. Energy from other sources was 

negligible. 

An estimate of the amount of energy derived from various fuels that 

was consumed in the period from 1850 to 1970 was obtained by using the 

computer program given in Appendix D to integrate the curves in Figure 

18 
4.1. The results, in units of Q (10 Btu), are summarized in Table 4.1. 

Table 4.1. U. S. energy consumption from 1850 to 1970 

Fuel 

Coal 

Oil 

Gas 

wood 

Hydro 

Nuclear 

Total 

Percentage of 
1970 Energy 
Consumption 

20 

44 

32 

3.7 

0.3 

100 

U. S. Energy Consumption 
from 1850 to 1970 

(Q) 

1.07 

0.68 

0.39 

0.15 

0.05 

2.34 
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B. Energy Resources 

1. With present technology 

Accurate, or even approximate, estimates of amounts of available, 

or potentially available, fuels are extremely difficult to make due 

to the various uncertainties concerning the amounts of the fuels.that 

actually exist. In order to examine energy resources, it is necessary 

to introduce some terminology. Reserves will be defined as the quantities 

that are known to exist and can be extracted at present cost levels using 

current technology. Resources will be defined as the quantities proven 

or unproven which can be extracted at or below a specified cost level 

using currently feasible or reasonably assured future technology. Finally, 

the resource base will be defined as all proven or unproven quantities 

that exist in a given geographical area regardless of whether they can 

be extracted or not (22). The most meaningful quantities for long 

term assessment are resources and the resource base, since proven 

reserves are relatively small, and of course they change as the result 

of further exploration. 

Table 4.2 shows a summary of estimates of U. S, fossil fuel resources. 

The table, while by no means complete or exhaustive, covers the most 

authoritative estimateg available today. These data can be converted 

to common energy units by using the following conversion factors (36) 

1 X 10̂  ̂Btu = 100 X 10̂  ̂ft̂  of gas 

" = 178 X 10® Bbl of oil 

" = 44 X 10® tons of coal 
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and by selecting the largest of the individual estimates in Table 4.2. 

The results of this conversion are shown in Table 4.3. The fossil 

resources in this table represent the initial supplies of fuel in the 

U. S. including the portion that has already been used. 

Table 4.2. Estimates of U. S. fossil fuel resources, including Alaska 

Source 
(109 

Coal 
metric tons) 

Oil 
(10* Bbl) 

Natural Gas 
(lOlZ ft3) 

Hubbert (Averitt) (144) 2972 200® 1075̂  

Scarlott (54) - 250-750° -

Schurr & Netschert (22) - 500̂  -

Landsberg & Fischman (145) 1700 250* 
500b 

1200-1700* 

Hottel & Howard (10) - 600* -

Dept. of Interior (13) - - 150of 

Sartorius (36) 17-26Q* 5-9Q® 2Q̂  

R̂ecoverable resources. 

Resource base . 

Ôil shale only, 

Ône Q = 10̂ ® Btu. 
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Table 4.3. Conventional fuel resources in the U. S. (91, 92) 

Type Quantity Energy Equivalent 
(10l8 Btu) 

Coal 1700 X 10̂  tons 38 

Oil 
(without shale) 

250f 
500® 

2.8 

Natural Gas 
12 3 

1700 X lor^ ft"* 1.7 

Hydro 90 X 10̂  KW 
(386 X 109 KWh/yr.) 

0.004 (per yr.) 

Recoverable resources. 

Resource base. 

Hydro power should be considered a conventional energy source. The 

3 
maximum limit on U. S. hydro capacity is about 230-390 10 MW (22). 

However, Landsberg suggests that the practical maximum hydro capacity 

3 
will not be more than 90 10 MW at any time in the future (89). Base on 

an equivalent power plant efficiency of 33.3 percent, this capacity is 

18 
equivalent to a thermal input of 0.004 x 10 Btu per year. 

Nuclear power generation is still in the commercial development 

stage, however, it is expected to expand very rapidly in the next 10 

to 15 years (46). Most nuclear reactors now in operation or on order 

are light water reactors (LWR). Therefore, uranium must be considered 

a conventional fuel to the extent that it can be utilized by present 

technology. Table 4.4 shows estimates of the quantities of U. S. 

uranium resources that have been estimated by the AEC to be recoverable 

at various costs (10, 91). 
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2. With future technology 

Fission means the splitting of a nucleus into several nuclear 

fragments accompanied by the release of energy and neutrons. The fission 

235 
reaction is triggered by the collision of a neutron with a U nucleus. 

The new neutrons released from the fission reaction produce more reac

tions if they collide with other nuclei. The continuation of this process 

235 
is known as a "chain reaction." Today, only U can be used in the 

fission process. It is possible, however, to use the surplus neutrons 

released in the fission reaction to produce an artificial radioactive 

238 
isotope that is fissionable. If U is placed in the reactor, for 

example, it is transformed into plutonium 239, which is fissionable and 

can be used as a nuclear fuel. Thorium 232 also becomes fissionable by 

absorbing neutfcns. The process of producing fissionable material in 

the fission reactor is called "breeding" and the reactor in which this 

takes place is called the "breeder reactor" (170). 

The need to generate enormous additional amounts of electric power 

while at the same time protecting the environment, is becoming one of 

the most important major social and technological problems that this 

society must resolve over the next few decades. Nuclear breeder reactors 

hold great promise as the solution to these problems. By producing more 

nuclear fuel than they consume, they would make it feasible to utilize 

enormous quantities of low-grade uranium and thorium ores dispersed in 

the rocks of the earth as sources of low-cost energy for thousands of 

years (92, 94) . 

Until such time that breeder reactors become a reality, coal will 
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be by far the most abundant fuel. Moderately priced uranium Is relatively 

scarce. Gas and oil, though readily used fuels of exceptional quality, 

are in short supply. Breeder reactors, if fully exploited commercially, 

would increase the ultimate effectiveness of uranium fuel one hundred 

fold and the total energy resource base at least tenfold. In that case, 

uranium would be the most abundant fuel, and it will be economically 

practical to extract even the most expensive ones, since the breeder 

will increase the utilization factor. 

Because of this great potential effect on energy sources, the AEC, 

the nuclear industry and the electric utilities have launched large scale 

efforts to develop the technology whereby it will be possible to have a 

breeder reactor generating electric power on a commercial scale (94-96). 

The basic types of breeder reactors under study in the U. S. are: 

1) the Liquid Metal Fast Breeder Reactor (LMFBR), 2) the Gas Cooled 

Fast Reactor (GCFR), 3) the Molten Salt Breeder Reactor (MSBR) and 

4) the Light Water Breeder Reactor (lÂïBR) (10). In the U. S. and several 

other countries, it was decided that the concept of the LMFBR was the most 

attractive to pursue. In the U. S., the LMFBR has been under active 

study for over 24 years (95). 

Scae proponents cf breeder reactors consider the GCFR to be a better 

alternative than the LMFBR. They argue that the handling properties 

of the inert helium gas used in the GCFR are preferable to those of the 

liquid sodium used in the Lî-îFBR. Furthermore, the gas turbines could 

possibly be used in a closed helium cycle (82, 94, 99). If used with 

gas turbines, it is argued that the GCFR could be easily adapted to dry 
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cooling and would have a lower capital cost than the LMFBR (100, 101). 

Since the GCFR fuel requirements are similar to those of the LMFBR, 

proponents believe that the cost of GCFR development would be relatively 

low (60). The cost of its development will probably be paid, in order 

to ensure the overall success of the national breeder development effort. 

By 1990, it is probable that, for the purpose of extending the energy 

resource base, there will be a fully coordinated energy program in the 

U. S. which will include breeders. 

C. Fuel Supply Forecasts 

In Chapter III, a total energy consumption forecast for the U. S. 

18 
was presented. About 3.23 x 10 Btu of all fuels will be consumed 

during the last three decades of this century, according to that fore

cast. However, it is difficult to predict a fuel mix since, in the long 

run, fuels can easily be substituted or interchanged. Even though the 

energy requirement in the years from 1970 to 2000 will be huge, any one 

of the conventional fuels will be able to provide a major part of it. 

Hence, there are many possible combinations of fuels which could meet 

the requirement. The composition of the future fuel mix will be a function 

of the evolving technology of the demand sectors, including new energy 

forms and conversion systems and the ability of resources to substitute 

for each other under various conditions of price and availability. 

Considering the fact that proven oil reserves in this country are 

disturbingly low and domestic exploration is decreasing, the U. S. will 

have to increase its dependence on foreign oil in the near future (46). 

According to the National Petroleum Council estimates, the U. S. will 
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import 40 percent of its oil by 1975 and 57 percent of it by 1985 (18). 

Natural gas use cannot continue to grow as rapidly as it has since 

1950 (See Figure 4.1), because the supply is limited. Environmental 

problems are blocking further domestic exploration for natural gas. In 

addition, there is a shortage of capital to finance this exploration, 

since the producer prices have historically been regulated (46). In the 

next several years, gas and liquid natural gas (LNG) imports will supple

ment the domestic supply. After 1980, Alaska pipeline imports and syn

thetic gas from coal will contribute to the supply. 

Paradoxically, coal, the most polluting of the fossil fuels, is also 

the most plentiful source of energy. It appears to be the logical source 

for much of the future energy need. It is still used to fire boilers 

for the generation of 55 percent of all steam-electric power in the U. S., 

although it accounts for only 20 percent of the total energy. But, coal 

poses environmental problems at every stage, from mining to combustion. 

Strip mining creates an acid damage problem and deforms the landscape. 

The EPA restricts combustion of high sulfur coals and the supply of low 

sulfur coals is limited (80 percent of Eastern coal reserves are more 

than 1 percent sulfur by weight) (103), Although techniques to desulfurize 

stack gas are being developed, none are or will be available commercially 

until 1980 (46). Other desulfurization alternatives are being studied, 

but there is still much time consuming R&D left to do. 

The Nuclear power share of the energy market is expected to grow, 

although forecasters disagree on just how rapidly. In recent years there 

have been delays, hopefully temporarily, in constructing nuclear plants 

and in licensing to build them. If, as has been discussed, commercial 
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breeder reactors are in use by 1985 to 1990, there will be an ample supply 

of nuclear fuel. 

A forecast of fuel demand for the years from the present to the year 

2000 must take into account the interrelated factors of relative fuel 

prices, new technology, government regulation, environmental developments, 

etc. Several forecasts have been prepared and are summarized in the 

following tables. Many attempts at forecasting demand have been based on 

projections of recent trends in energy consumption and on the forecasters' 

knowledge of individual industries. While such forecasts do not enable 

one to estimate demand responses to changes in prices, they may still be 

useful as "boundary" projections for the relatively near future. Table 4.5 

and Figure 4.2 show such forecasts of U. S. total energy consumption by 

major consuming sectors. In these judgemental estimates, energy demand is 

divided into three primary use sectors - residential and comaercial; 

industrial; transportation - and one energy "transformation" sector, 

electric utilities, which transforms primary fuel into electrical energy, 

which then beccanes an input which goes into the three primary sectors. 

Demand in each of the major sectors for a particular energy source is 

affected by fuel price and other sccncialc and demographic variables. 

Table 4.6 and Figure 4.3 shew forecasts of U. S. consumption of energy 

resources by major sources. The ranges of the forecasts and the "average" 

forecast are also shown in this table. The average forecast indicates that 

the percentage of the market supplied by natural gas and oil will decline 

gradually from the high of 76 percent in 1970, but will remain above 50 

percent even as late as the year 2000. 

For each fuel, a number of regression models were tested in order 
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Table 4.5. Forecasts of U. S. total energy consumption by major consuming sectors in percent 

Residential Electric 
Source Ref. No. Year Industrial and Transportation Utilities 

Commercial 

NAE 41 1980 - - - 33.0 

1990 - - - 41.7 

2000 - - - 45.5 

aius 61 1970 31.6 21.5 24.2 22.6 

1980 28.3 19.7 24.5 27.7 

2000 19.3 12.5 25.3 43.0 

EBÂSCO 23 1970 - - - 24.8 

1975 - - - 26.8 

1980 - - - 29.3 

CMB 18 1970 32.0 19.0 24.0 25.0 

1985 26.0 16.0 21.0 37.0 

USET 17 1971 29.4 20.7 24.6 25,3 

1975 28.5 19.9 23.8 27.9 

1980 26.8 18.2 23.8 31.2 

1985 25.9 16.2 23.2 34.6 

2000 24.5 11.4 22.2 41.9 

H. & H. 10 1970 30.7 20.7 23.9 24.7 

NPC 18 1970 26.2 19.2 24.0 24.6 
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Table 4.5. Continued. 

Source Réf. No, Year Industrial 
Residential 

and 
Commercial 

Transportation 
Electric 
Utilities 

Cook 

RANGE: 

MEAN: 

1980 

1985 

1970 

2000 

1970 

1975 

1980 

1985 

1990 

2000 

1970 

1975 

1980 

1985 

1990 

2000 

21.8 

19.7 

37.0 

25.0 

26.2-37.0 

28.5 

21.8-28.3 

19.7-26.0 

19.3-25.0 

31.5 

28.5 

25.6 

23.9 

22.9 

16.3 

15.0 

25.0 

18.0 

19.0-25.0 

19.9 

16.3-19.7 

15.0-16.2 

11.4-18.0 

21.1 
19.9 

18.1 
15.7 

14.0 

23.3 

22.5 

28.0 

32.0 

23.9-28.0 

23.8 

23.3-24.5 

21.0-23.2 

22.2-32.0 

24.8 

23.8 

23.9 

22.2 

24.5 

32.0 

35.4 

9.0 

24.0 

9.0-25.0 

26.8-27.9 

29.3-33.0 

34.6-37.0 

41.7 

24.0-45.5 

21.8 

27.3 

30.6 

35.7 

41.7 

38.6 
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Table 4.6• Forecasts for U, S, consumption of energy resources by major sources in percent 

Source Ref. No. Year Coal Oil Gas Hydro Nuclear 

CMB 18 1965 22.0 44.0 30.0 4.0 0 

1970 19.7 44.7 31.7 3.8 0.3 

1980 18.0 41.0 25.0 4.0 12.0 

1985 16.6 47.2 20.2 2.8 13.1 

EBÀSCO 23 1970 20.0 43.4 32.6 3.8 0.29 

1980 16.0 41.3 30.8 3.2 8.7 

EMUS 61 1980 21.8 40.8 28.9 3.4 4.6 

2000 13.3 34.2 24.7 3.0 25.8 

PCCP 61 1980 20.7 34.7 31.5 - 9.4 

2000 18.0 35.0 28.9 - 15.9 

FFF 61 1980 29.7 44.1 23.2 3.0 -

2000 36,5 41.8 20.0 1.5 -

RAF 61 1980 19.9 41.6 30.5 3.3 4.0 

2000 13.3 45.6 25.0 2.1 14.1 

USE 147 1970 20.0 43.0 32.8 3.9 0.3 

1975 18.2 41.0 32.4 3.2 5.5 

1985 16.7 35.6 29.6 2.6 15.6 

2000 13.7 34.6 26.4 2.6 22.7 
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Table 4.6. Continued. 

Source Ref. No. Year Coal 

USET 17 1971 18.2 

1975 17.2 

1980 16.8 

1985 18.4 

2000 16.3 

LAIRD 36 1970 20.1 

2000 13.7 

NASSIKAS 36 1970 20.1 

1980 18.9 

1990 13.2 

MORTON 36 1970 20.1 

1985 16.7 

2000 13.7 

NPC 18 1985 19.3 

SP(®N 60 1960 23.2 

1970 18.0 

1985 20.7 

2000 20.0 

Oil Gas Hydro Nuclear 

44.2 33.0 4.0 0.6 

43.7 31.4 4.4 3.2 

43.9 28.0 4.2 7.0 

43.5 24.3 3.7 10.1 

37.2 17.7 3.1 25.7 

43.0 32.8 3.8 0.3 

34.6 24.6 2.6 22.7 

43.0 32.8 3.8 0.3 

40.0 27.9 3.2 10.0 

35.7 25.5 2.6 23.0 

43.0 32.8 3.8 0.3 

35.6 29.5 2.6 15.6 

34.6 26.4 2.6 22.7 

43.4 17.0 2.5 17.2 

41.5 31.4 3.9 -

44.8 33.2 3.7 0.3 

42.8 22.4 2.4 11.7 

38.2 14.3 2.0 25.5 



www.manaraa.com

Table 4.6. Continued. 

Source Réf. No. Year Coal Oil Gas Hydro Nuclear 

RANGE: 

1960 23.2 41.5 31.4 3.9 -

1965 22.0 44.0 30.0 4.0 0.0 

1970 18.0-20. 1 43.0-44. 8 31.7-33 .2 3 .7-3. 9 0.29-0. 3 

1975 17.2-13. 2 41.0-43. 7 31.4-32 .4 3 . 2-4. 4 3.2-5. 5 

1980 16.0-21. 8 40.8-44. 8 23.2-31 .5 3 .0-4. 2 4.0-12. 0 

1985 16.6-20. 7 35.6-47. 2 17.0-29 .6 2 .4-3. 7 11.7-17. 2 

1990 13.2 35.7 25.5 2.6 23.0 

2000 13.3-3(3. 5 34.2-45. 6 14.3-28 .9 1 .5-3. 1 14.1-25. 8 

1960 23.2 41.5 31.4 3.9 

1965 22.0 44.0 30.0 4.0 0.0 

1970 19.7 43.6 32.7 3.7 0.3 

1975 17.9 42.0 31.9 3.8 4.4 

1980 20.2 40.1 28.2 3.5 8.0 

1985 18.0 39.2 23.8 2.8 16.2 

1990 17.9 32.9 23.6 2.6 23.0 

2000 17.6 31.0 23.1 2.4 25.9 
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to estimate future fuel mix percentages. The following polynomial regres

sion models proved to be the best with correlation coefficients of 0.850, 

0.900, 0.960, 0.957 and 0.995 for coal, gas, oil, hydro and nuclear, 

respectively. 

TFC = 23.885 - 0.512y + 0.0163ŷ  - 0.00018ŷ  + e (4.1) 

TFC = 29.730 + 0.748y - 0.058ŷ  + 0.00087ŷ  + e (4.2) 

TFC = 40.792 + 0.778y - 0.052ŷ  + 0.0067ŷ  + e (4.3) 

TFC = 3.800 + 0.067y - 0.006ŷ  + 0.00009ŷ  + e (4.4) 

TFC » 0.689 - 0.142y + O.llOŷ  - 0.0025ŷ  + e (4.5) 

The resultant "surprise-free forecast", shown in Figure 4.4, is an average 

fuel forecast to the year 2000. The market percentages which correspond 

to the figure are shosTn in Table 4=7, as is the total energy consumption 

forecast which was developed in Chapter 111. Coal provides a declining 

percentage of the total fuel requirement in this average forecast. Gas 

and oil percentages exhibit more modest declines, and the nuclear energy 

percentage increases dramatically to 26 percent of total use in the year 20 

2000. 

Table 4.7. Future fuel mix estimations, in percent 

Year Energy Coal Gas Oil Hydro Nuclear 
Consumption (%) (%) (%) (%) (%) 
(10" Btu) 

1970 68.8 20.0 33.0 43.0 3.7 0.3 

1980 88.0 18.2 29.2 40.4 3.2 9.0 

1990 122.0 15.7 26.2 37.2 2.6 1|.3 

2000 164.5 13.2 23.6 34.7 2.5 26.0 
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By Integration of the fuel curves in Figure 4.4 from 1970 to the 

year 2000, using the computer program given in Appendix D, the projected 

energy supply of each fuel can be obtained for this period. The calculated 

18 
values are shown on Figure 4.4 in units of Q, which is equal to 10 Btu. 

18 
They are also shown in Table 4.8 in 10 Btu. Assuming domestic oil and 

gas production will remain constant, the domestic fossil fuel supply is 

estimated for the period of 1970 to 2000, and is shown in Table 4.8 (18). 

The balance of the oil demand is assumed to be met by imports, while the 

balance of gas demand either is met by imports or after 1980 is replaced 

by the synthetic gas from coal, which is called syngas. This syngas 

production after 1980 could possibly increase the demand for coal by 

0.1 X 10̂ ® Btu (18). 

Table 4.8. Projected fuel supply for the U. S. for the period of 1970 to 
2000 

Fuel 
Type 

Domestic Supply 
(10l8 Btu) 

Imported Supply 
(lolB Btu) 

Consumption 
(lO^B Btu) 

Coal 0.581 + 0.100 - 0.681 

Oil 0.591 0.570 1.161 

Gss 0.536 0.208 0.744 

Hydro 0.096 - 0.096 

Nuclear 0.548 - 0.548 

Total 2.452 0.778 3.230 

Table 4.9 shows the estimated fossil fuel inventory for the U. S. in 

the year 2000, which is based on resources and forecasted comsumption. 
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Table 4.9. The U. S. fossil fuel inventory in the year 2000 

Fuel Initial Consumption Projected Inventory in Depleted 
Type Resources 1850-1970 Consumption the year 2000 (%) 

(10l8 Btu) (10̂ 8 Btu) 10̂ 8 ĵ u) (10̂ ® Btu) 

Coal 38.0 1.07 0.681 36.249 4.60 

Oil 2.8 0.68 0.591 1.529 45.39 

Gas 1.7 0.39 0.536 0.774 45.53 

As is evident in Table 4.9, the coal supply by the year 2000 will 

scarcely have been dented, while the original oil resource base will 

be half depleted; the presently estimated recoverable oil resources will 

be totally depleted, and the recoverable gas resources will be 60 percent 

depleted. In summary, the "premium" fuels which presently supply over 

three-fourths of the U. S. energy needs will be virtually exhausted by 

the year 2000= 
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D. The Intact of Advanced Technology 

Today, the great bulk of our electric energy demand is met by con

verting kinetic (mechanical) energy into electrical energy in an engine 

with rotating or reciprocating parts, such as are associated with turbines, 

dynamos, and combustion engines. Most of the kinetic energy is in turn 

derived by conversion from chemical energy, through combustion. Recently, 

there has been rising interest in and much research concerning direct 

conversion of kinetic energy to electric energy, bypassing the inter

mediate step of mechanical energy. Table 4.10 shows the different types 

of energy and their interrelationships (16). 

Research and development (R & D) on promising alternate energy sources 

and conversion technologies may develop practical substitutes for fossil 

and nuclear fuels or supplementary energy sources. Some of the new 

technologies will be discussed in terms of the primary energy sources 

with which they are associated: coal, nuclear fission, gsctherzsl, oil, 

nuclear fusion, and solar. These techniques must be considered possible 

alternatives, not certainties. 

1. Coal 

Presently, coal is the major fuel used by utilities. Domestic coal 

reserves are significantly larger than the reserves of any other fossil 

fuel. The problems created by coal are primarily environmental. Since 

most of the coal in the U. S. contains over 1 percent sulfur (103), 

techniques are needed to desulfurize it so that it can be a clean energy 

source. The Clean Air Act of 1970 authorizes the Environmental Protection 
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Table 4.10. Energy conversion matrix 

"\̂ rcmi 
To Electromagnetic Chemical Nuclear Thermal Kinetic 

(Mechanical) 
Electrical 

Electro
magnetic 

Cheinilumi-
nescense 

Gamma 
reactions 

Thermal 
radiation 

Accelerating 
charge 
(cyclotron) 
Phospher 

Electro
magnetic 
Electrolumi-
nescense 

Chemical Photosynthesis 
Radiation 
catalysis 
Ionization 

Boiling 
(water/steam) 
Dissociation 

Dissociation 
by 
radiolysis 

Electrolysis 
(aluminum 
production) 

Nuclear Gannna-neutiron 
reactions 

Unknown Unknown Unknown Unknown 

Thermal Solar absorber Combustion Fission 
Fusion 

Friction Resistance-
heating 
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Table 4.10. Continued. 

From 
To Electromagnetic Chemical Nucleaic Thermal Kinetic 

(Mechanical) 
Electrical 

Kinetic 
(Mechanical) 

Radiometer Muscle Radioactivity 

Thermal 
expansion 
(turbines) 
Internal 
combustion 
(engines 

Motors 
Electro
striction 
(Sonar 
transmitter) 

Electrical 
Electrical 

Photo
electricity 
Radio 
antenna 
Solar cell 

Fuel cell 
Batteries 

Nuclear 
battery 

Thermo
electricity 

Thermoionics 
Thermo-
magnetism 

Ferro-
electricity 

MHD 
Convent iona1 
generator 
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Agency (EPA) to set maximum allowable sulfur oxide emission levels for 

coal burning electric power plants (46). Coal mining will probably be 

prohibited in some places only by land use restrictions. This makes it 

even more essential that the most accessible coal be delivered for use in 

energy production. 

Utilities are presently testing about 13 stack gas desulfurization 

techniques. One or more of them will probably be commercially available 

by 1980 (46, 104, 105). Add on sulfur removal equipment probably will 

be of only limited value in the long run, as it falls to optimize the 

whole system. Some of the other processes being studied will probably 

reduce power plant thermal efficiency, and still others create problems 

with solid or liquid waste disposal (106). 

One way to control pollution at ground level is to install very tall 

stacks. Tall stacks, here defined as stacks over 300 feet high, do not 

reduce overall emission, but do help disperse the effluent over a wider 

area. Peak ground level concentrations from the tall stacks are usually 

noticeable at lower levels than concentrations from short stacks. The 

trend toward larger power plants makes construction of tall stacks more 

feasible, but it also causes an increase in total emissions. More re

search is needed to determine the extent to which tall stacks improve 

local air quality under various meteorological and topographical con

ditions. 

Sulfur can also be removed from the coal in the boiler during 

combustion. This could possibly be done by a fluidized bed boiler, which 

would also decrease the capital cost of the central power station (103, 
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107). Pressurized fluidized bed boilers may be operated commercially 

by the 1980's. 

Another means by which coal would be utilized without producing sulfur 

pollutants is the process of coal gasification, by which coal would be 

converted into synthetic pipeline quality gas or low Btu "power gas" for 

electric power generation (108). Although the power gas could be made 

less expensively, it could not be economically piped over long distances. 

It could be used in utility boilers and in combined cycle plants which 

use a gas turbine in a topping cycle and a conventional steam cycle for 

bottoming. In this way, coal would provide energy in a cleaner way at 

a lower cost than if the boiler and steam turbine were used (108, 109). 

Condenser cooling requirement also would be reduced. If current estimates 

are correct, this gas turbine technology could, in the future, increase 

total plant efficiency to nearly 50 percent (110). 

Sîûsll SûJGunts cf lts7=5tu pcwer gas may be produced comsercially by 

the late 1970's (112). By the 1980's, enough of it will be produced to 

make a significant contribution to the gas supply. Also, by the 1980's, 

high-Btu gas produced by coal gasification could be making a modest 

contribution to the U. S. natural gas supply (46, 111). 

Another alternative for use in a combined cycle with the conventional 

steam boiler is the magnetohydrodynamic (MHD) generator. Numerous 

experimental MHD generators have been built, and a vigorous research 

program is underway to make them commercially feasible (114). The first 

application of the MHD to increase the efficiency of energy conversion 

will be in combination with conventional fossil fuel steam plants. The 
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overall plant efficiency of such a combination could be as high as 60 

percent, thus reducing waste heat twice as much as today's most efficient 

plants (113). The MHD generator has some characteristics which would 

possibly make it a desirable peaking unit. For example, it takes several 

hours to bring a fossil fuel or nuclear steam plant from a standstill to 

full capacity; an MHD peaking plant can do it in five seconds (106, 115). 

Research supported by the Edison Electric Institute (EEI) is being con

ducted to develop a single cycle MHD peaking unit which might possibly 

be used for a base-load design. However, there is some doubt as to whether 

the MHD generator will ever be a major source in this country (106). 

Fuel cells present another possibility for the future utilization of 

fossil fuels. They convert stored chemical energy directly to electricity, 

skipping even the production of heat as an intermediate step. Present 

day fuel cells can operate at higher efficiencies than conventional 

fossil fuel or nuclear power plants. They operate on natural gas or 

syngas. Further development to reduce capital costs could produce sub

station size (10-20 MW) fuel cells for peaking power, using natural or 

synthetic gas (79, 114). The advantages of the fuel cells are many: 

they are clean and efficient; they operate quietly; they have a low space 

requirement, and have no need for water cooling, which makes it feasible 

to locate them at load centers (117). In this application, they would also 

reduce transmission system requirements. However, the natural gas shortage 

and anticipated high cost for substitutes will probably limit their use 

in electric power production to production of peaking energy (106). 
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2. Nuclear fission 

Presently, nuclear reactors are not very efficient. Their efficiency 

is generally 32 to 33 percent, with the exception of the HTGR, which 

operates at an efficiency of 37 to 38 percent. Breeder reactors convert 

fertile Isotopes into fissionable isotopes. In this way, the proportion 

of the nuclear fuel that is useful for energy production is vastly 

Increased, which enlarges the energy resource base. In addition, the 

thermal efficiency of nuclear breeder reactors is about 40 percent, 

which is higher than that of today's light water reactors (93). 

The LMFBR demonstration plant is scheduled to be completed in 1980 

(60, 98). The 1980's may see the first LMFBR and possibly other breeders 

in commercial operation. If these are successful, there could be many 

commercial breeders in the 1990*8, a situation which would fit well into 

a coordinated nuclear energy program using uranium resources to their 

maximum potential. 

3. Geothermal energy 

Heat from the earth's molten core and from chemical and nuclear 

reactions in the crust is carried to the surface by means of conduction, 

volcanoes, or hot springs. Under some circumstances, underground water, 

trapped in porous rock foraetlons. is heated to extremely high tempera

tures by this geothermal energy. There are at least 1000 known hot 

springs in the U. S. (118-121). However, at the present time, there is 

only one geothermal power plant operating in the U. S. It is located 

north of San Francisco and is owned by the Pacific Gas and Electric 

Company. It has six generating units with a total capacity of 192 MW, 
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using saturated steam. The ultimate power capacity of the geysers at 

this location may be as high as 1000 MW (121). The potential contribution 

of geothermal energy to the total energy supply will be very small (121). 

Estimates of total U. S, geothermal capacity range from 30,000 to 100,000 MW 

(118). These estimates assume full utilization of the potential at loca

tions where steam or hot water are visible and near to the surface. About 

85 percent of such locations are in the West (120). 

The AEC's plowshare concept (120), which is still under study, 

could open an almost infinite supply of geothermal energy by tapping the 

vast heat in the hot rock deep in the earth. The hot rock would be 

fractured by small underground nuclear explosions. Then, water would be 

pumped into the fractured area, wherein it would become superheated. 

This superheated steam would rise to the surface where it could be used 

to drive turbines and thereby produce electric power. The condensed 

steam would be recycled back into the hot rock area. Hot rock, at the 

necessary depth and temperature, exists in many places in the U. S., 

most of which are in mountainous areas. 

Conventional geothermal resources (steam and hot water) will probably 

be utilized as much as is advantageous economically without creating 

environmental problems. This will be possible for the most part in the 

western states and is unlikely to provide a large proportion of the 

future U. S, energy supply. 

4. Oil 

The U. S. oil supply is very limited, compared to the world's oil 

g 
supply. The world oil supply is estimated to be 1,350 to 2,100 x 10 
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barrels, while the U. S. has about one-tenth of this amount (88). Within 

the bounds of any government restrictions on oil imports, the U. S. can 

import oil, particularly from the Middle East, where nearly one-third of 

the world's oil is located (86, 122). In 1971, the U. S. imported 28 

percent of its oil requirement, partly because it could be imported more 

cheaply than it could be produced (87). The U. S. will very likely 

increase its dependence on foreign oil in the near future, at least to 

some extent. 

Oil can also be produced from nonpetroletsn fossil fuels like coal, 

tar sands, and oil shale. There are massive oil shale deposits in 

Colorado, Utah, and Wyoming. There are an estimated 600 billion barrels 

of raw oil contained in rock which has at least 25 gallons of oil in each 

ton. Much of this rock is on federally-owned land (10). This 600 billion 

barrels is approximately equivalent to three times the present U. S. 

petroleum resources. Heat at high temperatures is needed to separate 

the kerogen (oil) from the rock. The technology to do this has been 

developed by the U. S. Bureau of Mines and a number of companies. 

However, the process is an expensive one. The disposal of the spent 

shale after retojf£ing also presents a problem. More research is needed 

to determine whether oil shale can ever be a practical ccssssrcial source 

of oil. 

There are vast tar sands resources in Alberta (Canada) from which 

oil is already being produced. In contrast to the size of oil shale 

resources, U. S. tar sand resources are small, with less potential of 

contributing to the oil supply. 
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Obtaining oil from coal presents a greater technical challenge than 

does extracting it from shale. However, more oil can be obtained from 

coal than from shale and, consequently, there is less disposal problem. 

Research concerning the production of oil from coal is under way at a 

pilot plant at Cresap, West Virginia, which was built in 1967 with funds 

from the Office of Coal Research (103). The Gulf Oil Corporation is also 

studying solvent refining of coal, whereby a low sulfur, low ash liquid 

fuel for utility boilers could be produced (103, 123). 

5. Fusion 

Presently, two processes by which nuclear fusion can be used to pro

duce power are being studied. One utilizes laser-ignited microbombs, and 

the other, magnetic confinement of an ultra-hot plasma. However, probably 

neither will be used for producing commercial power before the year 2000 

(124, 125). 

It has not yet been shown that nuclear fusion is scientifically 

feasible. One of the goals of the R&D Task Force of the Edison Electric 

Institute is to demonstrate such feasibility. Many scientists believe 

that fusion will be available during this decade (125). Nuclear fusion 

occurs when an atom of deuterium merges at very high temperatures (100 

million degrees C=) with an atom of trltiwB; or when two deuterium atoms 

merge to form a helium atom in process releasing a great amount of heat 

(126). Both deuterium and tritium are isotopes of hydrogen. Deuterium 

is not scarce, but naturally, comprises about one part per 6,200 of water. 

Methods of separating deuterium from water are well-developed. Tritium, 
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on the other hand, is very scarce and very expensive, as well as 

radioactive. A deuterium-tritium (D-T) fusion reactor, to be serviceable, 

must breed tritium, which requires a lithlum-6 blanket. Neutron bombard

ment causes the lithium-6 to breed tritium. Both lithium and deuterium 

are consumed in the process. Hence, the amount of energy that can be 

produced by means of the D-T reaction is limited by the world's lithium 

supply. Because of this limitation, the energy production potential of 

the D-T reaction is little more than that of U. S. fossil fuels (125). 

Because no raw materials are consumed, the Deuterium-Deuterium (D-D) 

reaction can potentially provide an infinite amount of energy. The D-D 

reaction is technically more difficult to Induce than the D-T reaction 

because it proceeds at higher temperatures. Another drawback is that this 

réaction produces radioactive, tritium, which would create a disposal 

problem (125). There would, of course, be no such disposal problem with a 

D-T reactor. One advantage of the D-D reaction is that it produces 

high velocity charged particles called protons, while the D-T reaction 

produces energetic neutrons (126). Because of this, the energy produced 

by the D-D reaction may be directly convertible to electricity, which the 

energy produced by the D-T reaction would not be. This direct conversion 

would ûtâke possible the elimination of the Garnot cycle, which decreases 

plant thermal efficiency. 

Fusion reactors utilizing magnetic confinement will very likely be 

housed in huge central stations. Units could very likely have capacities 

of at least 1,000 MM (126) and probably up to 10,000 MW (127). Fusion 

reactors would be safer and would operate (up to 60 percent) more effi
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ciently than fission reactors (126, 127). The laser fusion reactor 

could have a capacity much less than 1000 MM, about 100 MM. It would 

be just as safe and could be operated only when needed (124). 

If commercial fusion reactors are to be developed, the necessary 

research will cost billions of dollars. The U. S. will undoubtedly 

make this investment, if indeed the process is shown to be scientifically 

feasible. Prototype fusion reactors may be in operation by the year 

2000 or the early part of the 21st century. 

6. Solar energy 

The amount of solar energy which radiates to the U. S. is hundreds 

of times as much energy as is consumed. Based on the U. S. annual average 

solar incidence of about 1400 Btu per square foot day, the continental 

U. S. intercepts, annually, about 600 times the 1970 energy consumption 

15 
of 69 X 10 Btu (10). However, the energy is scattered and is not supplied 

continually. There is none supplied at night and very little on cloudy 

days. A method to cheaply convert solar energy into another, more useful 

form of energy, and a method to store that energy are needed. Various 

solar conversion processes have been proposed, but none has much potential 

for producing a major amount of energy. 

Peter Glaser (47, 124) waa the first to produce a synchronous orbiting 

satellite with an array of solar cells, which would "capture" solar energy. 

The solar energy would then be converted to microwave energy, which would 

continuously be transmitted to a receiver on earth, where the microwave 

energy would be converted to electricity. 

A solar farm was suggested by Aden and Marjorie Melne (10, 127, 128). 
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Solar radiation would be entrapped by specially designed thin films and 

transferred to liquid sodium. Then, by means of an exchange mechanism, 

the heat would be conveyed to a secondary water cycle to be used for 

conventional steam generation. These solar farms could be 25-30 percent 

efficient. One major drawback is that the films for collecting the solar 

energy would require exceedingly large land areas. Also, if there were 

no way to store the energy, the supply would vary with the weather. 

It may sometime be feasible to install flat collectors which convert 

solar energy to electrical energy on rooftops and similar surfaces (128). 

However, this will not be practical until solar cells are sharply reduced 

in price and a method is developed to store the energy. 

Solar space heating has already been tested. In this system, solar 

heat is transferred from collectors on a roof to water or an air stream, 

and into a water tank where it is stored. Houses can be economically 

heated with such a system in certain sunny areas where fuel is expensive 

(10). However, the house has to be designed with solar heating in mind, 

and even so, supplemental heating will be necessary. Solar home heating 

will no doubt be used in the future in certain areas. 

2 
A 1000 î'Sî (24-hr. average) power plant operating in a 1400 Btu/ft 

per day solar climate with an efficiency of 5 percent would require 37 

square miles of ground coverage, compared with a few hundred acres needed 

for a nuclear or fossil-fuel plant (10). Therefore, in practical terms, 

there is considerable doubt that solar energy will replace present power 

sources in the future. 
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E. The Limits to Energy Growth 

As discussed in Chapter III, it is forecasted that future energy 

consumption will be vastly greater than present consumption. However, 

there are physical factors which may make such growth in the energy 

supply impossible - the availability of adequate resources, possible 

excessive pollution, and undesirable global climatic effects which could 

be created. 

Ic Resources 

The energy resource base is expected to increase to well over lOOOQ 

from today's level of 55Q in the next several decades (16). According 

18 
to the projection discussed in Chapter III, 3.23 x 10 Btu total energy 

18 
will be used by the year 2000, and about 60 x 10 Btu used by 2100 

(See Table 3.20). Hence, fuel resources will presumably be adequate 

through and beyond that time. 

Some types of energy production may be limited by the availability 

of nonfuel resources. For instance, the energy production potential of 

D-T fusion is limited by the lithium supply (125). A deficit of platinum 

may limit fuel cell development unless another usable catalyst is found 

(42). Soma of these limitations can be overcome, though. It may be 

possible, for example, to recycle rare resources. Since indications are 

that there are more than adequate potential resources to meet projected 

demand, it is unlikely that energy growth in the next century will be 

impeded by resource limitations. 
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2. Pollution 

Pollution is unavoidable, as it is produced by most industrial 

processes. Production of enormous amounts of solid waste is a problem 

in a society such as this which has a "throw away" mentality and finds 

"no-deposit-no-return" packages most economical. Pollution will un

doubtedly increase exponentially as long as industrial and energy pro

duction do so, although this cannot continue indefinitely, as there is a 

point beyond which more pollution would be Intolerable. The crux of the 

problem is economic. It is costly to eliminate or dispose of pollution 

produced as a by-product of an industrial process. The least expensive 

way to deal with pollution, the one which has been used in the past, is 

to not deal with it at all. But, it is possible to design industrial 

processes which produce essentially no pollution, excepting waste heat, 

if the public is willing to pay the price. 

Energy production creates basically the same types of pollution 

problems as do other industrial processes. The level of pollution which 

the environment can safely tolerate must be determined. The industry 

must find practical methods to collect, recycle, or safely dispose of 

pollutants. All this may at times be technically challenging, but it 

no doubt is possible, although probably expensive. Hence, pollution 

control is unlikely to inçede growth of the energy supply, though it 

will make energy production more costly. 

3. Climatic effects 

The sun's energy supports the life cycle of the earth. Variations 

in the amount of radiant energy from time to time and from region to 
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region result in different and changing atmospheric conditions, seasons, 

and climatic conditions. If man's energy production ultimately were to 

produce an amount of waste heat that was significant compared to the amount 

radiated from the sun, it certainly would seriously alter climatic condi

tions. For this reason, energy production cannot increase indefinitely. 

However, there will probably be no climatic problem until the amount 

of heat added to the atmosphere is equivalent to about 1 percent of that 

radiated from the sun, though this is only a speculation (10, 42). 

Utilisation of most forms of energy ultimately produces waste heat, 

which increases the thermal burden on the biosphere. This is not true 

for an invariant energy resource like hydropower, because it basically 

circulates through the terrestrial water cycle. Unfortunately, hydro-

power will never be able to meet a major portion of energy needs. Solar 

energy could also be an invariant energy resource if either the solar 

cells or the converters were located on the earth's surface. The Glaser 

approach to solar energy utilization does not include this future. All 

other means of energy utilization, other than hydropower and solar con

version are noninvariant and so would result in the release of waste 

heat into the environment. This is even true of geothermal energy, 

which originates in the earth itself. This being the case, it is possible, 

to evaluate the overall thermal situation in the U. S. An average of 

2 
1400 Btu/ft of solar energy radiates to the U. S. land area each day 

18 
(10), which is equivalent to 51 x 10 Btu per year. According to the 

energy forecast discussed in Chapter III, Section G, the rate of growth 

of Btu per capita will be 2 percent by the year 2040, and almost 0.2 
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percent by the year 2100. The energy, naturally, will not be equally 

distributed, so the thermal load will be greater in some areas than in 

others. Even so, thermal pollution is unlikely to cause global climatic 

problems even as far in the future as the year 2100, largely because over 

two-thirds of the earth's surface is water. Even if man generates heat 

at a rate of 3 percent of the solar input on all land areas, the overall 

worldwide heat generation rate would still be 1 percent. The north

eastern region of the U. S., which consumes 40 percent of the nation's 

energy, locally produces waste heat at a level equivalent to 1 percent 

of that provided by the sun. The 4,000 square-mile Los Angeles basin 

area suffers no ill climatic effects, even though it generates heat at 

a 5 percent level (129). 

There is much concern about the long range effect that human activities 

may have on the earth's temperature and thereby on its climate and 

atmospheric heat balance (50). The overall problem is complex and 

difficult to quantify» There are at least five ways in which man could 

change the earth's temperature, some of which are not directly related 

to energy utilization. 

1. Fossil fuel combustion produces COg and therefore increases the 

CO<j concentration in the atmosphere. This CÔ  blocks the long

wave radiation from the earth's surface to space, and so raises 

the average temperature by this "greenhouse effect." If the 

entire U. S. fossil fuel supply were eventually burned for fuel, 

the atmospheric COg concentration could double, thereby possibly 

increasing the average earth temperature by 2.4 degrees C. 
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2. Combustion of fossil or nuclear fuel releases heat directly 

into the atmosphere, thereby raising the earth's temperature. 

3. Aerosols produced by industry, automobiles, etc., make the 

atmosphere less pervious to incoming solar radiation, which 

tends to lower the earth's temperature. 

4. Incorrect agricultural procedures produce dust, which has the 

same effect as do aerosols. 

5. Urbanization and deforestation on the earth increase the propor

tion of inccsning solar radiation that is reflected outward 

again as soon as it hits the earth's surface (albedo). This 

tends to decrease the earth's temperature. 

The long range effect of the interaction of these factors on the 

earth's temperature is still a matter of speculation (50). Until further 

research is completed, the probable impact of growing energy consumption 

on global climatic conditions will remain uncertain, 

F. Fuel Supply Forecast for the 21st Century 

According to the forecast presented in Chapter 111, Section 6, the 

energy requirement in the decades after the year 2000 will be enormous, as 

shown by Table 4.11, 

Table 4.11. Forecasted U. S. energy demand for the 2l8t century 

Ten-Year Interval (lÔ G Btu) 

2000-2010 

2010-2020 

1.912825 

2.563244 
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Table 4.11. Continued. 

Ten-Year Interval (10** Btu) 

2020-2030 3.395954 

2030-2040 4.358086 

2040-2050 5.326945 

2050-2060 6.297757 

2060-2070 7.200201 

2070-2080 7.890642 

2080-2090 8.376136 

2090-2100 8.673228 

Total 55.995018 

18 
In the first decade alone, about 1.913 x 10 Btu will be required. 

Part of this may be provided by oil - some of which will be imported, 

and some of which will certainly be kerogen from shale oil. Domestic 

oil will make only a minor contribution as it will be âlmOSc: depleted. 

Domestic natural gas will also be almost totally depleted by the 

year 2000, as shown in Table 4.9. However, Alaska pipeline gas or LNG 

from the Middle East or Africa will still be imported. Syngas from 

coal, although expensive, will be available. Hence, gas will be used 

only for purposes which merit the high cost. 

Coal resources will be only slightly depleted by the year 2000 -

18 
coal equivalent to 36 x 10 Btu will still be available. Because 

breeder reactors will be in operation by that time, optimum utilization 

of uranium will be possible, and, therefore, uranium energy resources 

will be immense. By the first decade of the 2l8t century, prototype 
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fusion reactors may be in operation, hopefully paving the way for com

mercial plants in the second decade. Solar and geothermal sources will 

be utilized to a relatively small degree. Thus, in the years from 2000 

to 2020, much of the U. S. energy need will have to be met by coal and 

uranium. The degree to which the various forms of nuclear power and coal 

contribute to the energy supply will depend on their comparative costs. 

The cost of both nuclear power and coal will be determined primarily 

by the necessary capital investment, some of which will be for pollution 

control equipment. Both uranium and coal fairly certainly will be major 

sources of energy in the early part of the 21st century. 

Some scientists believe that nuclear fusion will be a viable energy 

source by the yeat 2000 (126), which may be the case if the necessary 

research and development are adequately funded. But, since research 

effort must be allocated among a number of important projects, the first 

conmercial fusion plants will probably not be in operation until the 

second decade of the 21st century. Hydropower will never be more than 

4 X 10̂  ̂Btu per year because of limited number of potential sites and 

water capacity. 

Because nuclear power will supply an increasing proportion of the 

energy supply after the year 2000, growth of electric power's share of 

the energy market will be accelerated. Electricity's share of the market 

will keep growing until it reaches 85 percent and the market is saturated. 
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V. DEVELOPMENT OF AN ELECTRICAL ENERGY MODEL FOR IOWA UTILITIES 

A. Introduction 

Recent developments in the energy field indicate that the United 

States cannot simultaneously continue its rapid growth in energy usage, 

maintain low energy prices, protect the environment, and remain rela

tively independent of foreign suppliers. Because changes in the price 

availability of electrical energy affects everybody and the whole econ

omy, a need for the development of an electrical energy model is apparent» 

In order to evaluate rapidly the consequences of different proposed 

energy policies, a computerized electrical energy model has been developed 

in this study. The necessary mechanism is built into the model in order 

to capture accurately the dynamics of changes, furthermore, if one wishes 

to answer the many "what if" questions, the computerized model has a con

sistent framework within which to investigate a wide variety of policies 

rapidly and economically. 

The model can be used to investigate the impact of a wide range of 

factors on the regional energy situation. The following list indicates 

the type of factors that can be considered: new technology, environmental 

restrictions, fuel import quotas, fuel availability, energy conservation 

measures, and price increases and decreases. 

The model is basically built for the electric power industry to min

imize the coat of energy used for electric generation through optimum allo

cation of various fuel mixes over a period of n years, where the energy is 

subject to a large number of physical and environmental constraints. 
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In order to keep the size of the model within reasonable bounds 

(because of a limited computer budget, difficulties involved in obtain

ing the necessary coefficients, and a time limitation) the model is 

applied to the State of Iowa rather than to the whole country. Thus, 

Iowa, 95 percent of which is electrified by a group of utilities referred 

1 
to here as the "Iowa Pool", was chosen as the region for the application 

of the model (134). 

B. Structure of the Model 

1. General discussion 

One approach to analyzing complex energy problems which are related 

to the electric power industry is to use mathematical "models". By means 

of a model, one attempts to fepresent the interactions between supply, 

demand, prices, and other variables through mathematical relationships. 

In a general sense a model can be defined as an intellectual construction 

bearing some relation to reality, which can be discussed and analyzed in 

and of itself (135). 

The electrical energy model developed in this study is a useful 

tool for minimizing overall fuel costs by optimum allocation of various 

fuel mixes among generating units, not only for the Iowa Pool as a whole, 

but also for the individual utilities. It is applied to the Pool under 

the assumption that the Pool members will act as a united group to mini

mize their overall fuel costs. 

The name "Iowa Pool" is not intended to imply any official con
sortium of companies ; it is merely a convenient name used for the 
identified group of Iowa utilities. 
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A functional block diagram of the electrical energy model is shown 

in Figure 5.1. It consists of a main fuel allocation model (FAM) and 

three forecasting submodels, namely: the fuel supply forecasting sub

model, the fuel cost forecasting submodel, and the electrical energy 

demand forecasting submodel. The initial data input is composed of in

formation on all of the submodels. 

Additional inputs concerning new technology and policy will modify 

the parameters within the FAM. The FAM uses the mathematical techniques 

of Linear Progranuaing (LP) In order to obtain the optimum fuel mixes 

which minimize the fuel costs of the pool or an individual company. 

The electrical energy demand forecasting submodel projects the 

electrical energy demands of the region into the future for each com

pany and/or for the Iowa Pool in total. A computer subroutine program 

was prepared to project the future electrical energy demands. This 

subroutine is presented in Appendix E. 

The fuel supply forecast gives the future fuel supply for each fuel, 

and the fuel cost forecast provides the future costs for each type of 

fuel. These forecasts have been provided by the individual companies in 

light of their long-term contracts with the fuel supply companies. 

The purpose of the new technology inputs is to investigate the impact 

of future major developments with respect to electrical energy supply and 

demand. From new technologies under Investigation, input constraints to 

the LP on supply and demand can be developed to reflect the new technol

ogies' effect on consumption over the appropriate time period. The 

specification of substitutions and price constraints can provide addi-
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Figure 5.1. A functional block diagram of the electrical energy model 
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tional means of reflecting the effects of new technologies. 

The investigation of national, regional, and environmental policies 

also requires manipulation of the FAM parameter inputs. From the new 

policies under investigation, LP input constraints on supply, demand, and 

cost can be modified. 

2. Mathematical model 

As explained before, the FAM uses a mathematical technique called 

Linear Programming. The LP is a mathematical process which seeks to 

minimize or maximize a linear function, called the objective function, in 

which the variables are subject to linear constraints. 

The objective function takes the linear form 

n 
Z = E C.X. (5.1) 

i=l ̂  1 

where Z is the value to be optimized. In our model, Z is the total fuel 

eosL which is to be Esiniirdsed. The represents n unknown quantities, 

and the are the costs associated with one unit of The may be 

positive or negative, whereas the must be defined in such a manner as 

to assume only positive values. 

The constraints, or restrictions, are limitations on the values that 

the unlcncwns may assume and must be a linear combination of the unknowns = 

The constraints assume the form 

n 
Z a..x. = , ̂   ̂b (5,2) 
1=1  ̂ J 

a 0 

or 
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*11*1 + *12*2 + ••• + *1.%. = ' = ' = »! 

*21*1 + *22*2 + -- + *2n*n = ' ̂ < "z 

*ml*l + *a2*2 + + *ml*a = ' = ' = \ 

X, ̂  0, x_ 2 0, ..., X a 0 where j = 1, 2, ..., m 
 ̂  ̂ " i = 1, 2, ..., n 

where there are m constraints of fdiich any number may be equalities or 

inequalities. Also, the number of constraints, m, may be greater than, 

less than, or equal to the number of unknowns, n. The coefficients of 

the unknowns, may be positive, negative, or zero, but must be con

stants. The bj are also constants, which may be positive* negative, or 

zero. The constraints in our model, as formulated, express the energy 

requirements, the generation limitations of specific units, and other 

restrictions which are described in the following sections. 

The constraints define a region of solution feasibility in n dimen

sional space. The optimum solution is the point within this space whose 

values minimize or maximize the objective function Z. In general, the 

solutions obtained are real and positive. 

In our model the objective function is used to find the minimum 

overall fuel costs of the Iowa Pool or of an individual utility by optimum 

allocation of various fuel mixes among generating units over a period of 

n years. Therefore, the objective function takes the linear form 
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N N 
y u 

Vik=Ik <5.3) 

where i = 1, 2, ..., N J 7 ' U 

j = 1, 2, Ng 

k  =  1 ,  2 ,  . N y  • • • > 

where i gives the serial number of utilities in the Iowa Pool in order to 

represent them in the computations. There are nine electrical utilities 

in the Pool, therefore N = 9. The serial numbers of the companies are 

given according to the code which is shown in Table 5.1. 

Table 5.2 and Figure 5.2 show the annual gross electrical energy 

requirement forecast for the Iowa Pool according to 1975 MÂRCÀ report for 

the period of 1975 - 1985 (137). Figure 5.3 represents the annual gross 

electrical energy requirement forecast for one company (IPL) for the years 

from 1975 to 1985. These nine utility companies account for about 95 

percent of the electricity generated in the State of Iowa. The remaining 

5 percent of the electricity is produced by municipal utilities (134). 

The index j represents the serial number of the generating units of each 

company of the Pool, where generating units may use different types of 

fuel, such as oil, coal, natural gas, and nuclear fuel, to produce energy. 

Because of its very small contribution, hydro is neglected in this study. 

Index k represents the number of years which are covered. In our 

study we covered only the eleven-year period from 1975 through 1985, 

because of a limited computer budget, difficulties involved in obtaining 

u 
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Table 5.1. The serial number of the companies in the Iowa Pool 

Serial Number Company Name Code Name 

1 Iowa Power and Light IPL 

2 Iowa Southern Utilities ISU 

3 Iowa Public Service IPS 

4 Interstate Power ISP 

5 Iowa Electric Light and Power lELP 

6 Central Iowa Power Cooperative CIPC 

7 Iowa-Illinois Gas and Electric IIGE 

8 Corn Belt Power Cooperative CPA 

9 Eastern Iowa Light and Power Cooperative EILP 
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Table 5.2. The annual gross electrical energy requirement of the Iowa 
Pool in GWh for the years from 1975 to 1985 (137) 

Year IPL 
(1) 

ISU 
(2) 

IPS 
(3) 

ISP 
(4) 

lELP(CIPC) 
(5-6) 

IIGE 
(7) 

CPA 
(8) 

EILP 
(9) 

Total 

1975 4111 1488 2896 3178 4840 3810 1919 285 22,527 

1976 4423 1706 3293 3369 5143 4111 2087 300 24,432 

1977 4769 1907 3729 3571 5538 4446 2306 325 26,591 

1978 5152 2039 4142 3785 5925 4801 2506 360 28,710 

1979 5534 2176 4432 4013 6340 5185 2723 395 30,798 

1980 5945 2324 4742 4253 6786 5600 2959 410 33,019 

1981 6396 2482 5116 4508 7262 6048 3217 430 35,459 

1982 6877 2652 5516 4779 7775 6532 3499 445 38,075 

1983 7353 2835 5929 5065 8320 7054 3785 475 40,816 

1984 7893 3031 6392 5369 8960 7619 4094 475 43,833 

1985 8466 3242 6893 5692 9534 8828 4428 475 46,963 
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Figure 5.2. The annual gross electrical energy requirement of the Iowa 
Pool in GWh for the years from 1975 to 1985 
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Figure 5.3. The annual gross electrical energy requirement of a single 
utility company (lEL) for the years 1975 to 1985 
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the necessary coefficients, and a time limit. 

Also define 

= cost of fuel used to produce electrical energy 

from jth generating unit of the ith utility during 

the kth year in dollars per MBtu. 

= amount of fuel used to produce electrical energy 

from jth generating unit of the ith utility during 

the kth year in MBtu. 

= amount of annual electrical energy purchases by the 

ith utility during the kth year in MWh. 

= cost of electrical energy purchases by the ith 

utility during the kth year in dollars per MWh. 

= amount of annual electrical energy sales by the 

ith utility during the kth year in MWh. 

= cost of electrical energy sales by the ith utility 

during the kth year in dollars per MWh. 

Fuel costs of a generating unit are proportional to the inclusive 

cost of heat and inversely proportional to the thermal efficiency. The 

cost of heat, in turn, depends on the sources of fuel and the transporta

tion and fuel handling costs, which are themselves affected by the total 

fuel consumption of the utility companies. 

There may be a larger number of physical and environmental restric

tions affecting the model in the long run than at the present. For 

example, the fuel imported for all purposes into the State of Iowa might 

be restricted by transportation capacity, e.g., rail capacity, barge 
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capacity, etc. The total electric generation might be restricted ?iv the 

water available to energy generation for cooling purposes in the State 

of Iowa. Furthermore, the needed transmission line capacity might be 

restricted by the corridor capacity available for the energy transmission 

lines. However, in our study, which covers only the eleven-year time 

period through 1985, we assumed that the above restrictions and many 

others which might apply were not of great Importance; therefore they 

were neglected. Some of the currently significant physical and environ

mental restrictions are presented below. 

3. Energy requirement restriction 

The electrical energy generated by the individual generating units 

of the Pool plus the electrical energy purchased minus the electrical 

energy sold by the Pool through out-of-Pool transactions is equal to the 

annual gross electrical energy demand of the Pool. 

\ ̂f \  ̂\ Ny \ 
S S 2 n X F + E 2 IL X P , - S S IL x P 
k=l j=l 1=1 k=l 1=1  ̂ k=l 1=1  ̂

= 2 S AGE.. (5.4) 
k=l 1=1 

"y "f 
S S E n,, X F,.,. + S E K, X S,,, - E E x 

S E K X PD,. X 8760 X ALF., (5.5) 
k=l 1-1 1 ik 

N N N N, N 
u y u y u 

i!l "ij * * kSl 
E 
1=1 

 ̂* ®ik ' • E 
k=l 

S 
1=1 

X 

where 
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= efficiency of jth generating unit of ith company of 

the Pool. It can be calculated by using the formula 

 ̂ (3413 Btu/kWh) X 100 
îj (Heat rate of the unit Btu/kWh)̂  ̂

= 3.413 MBtu/MWh. It is the heat energy equivalent to 

1 MWh of the electrical energy. 

Â îk ~ gross electrical energy demand of the ith 

utility for the kth year, in which system losses and 

energy uses of the plants themselves are included iii 

MWh. 

PDĵ ĵ  = annual peak demand of the ith utility during the kth 

year. 

ALF̂ k " annual load factor of the ith utility during the kth 

year. 

8760 = number of hours in a year. 

4. Energy capacity restriction 

The total electrical energy generated by each individual generating 

unit of the Pool will not exceed the total maximum available generating 

capacity of the Pool 

\ "f \ "y "u 
S  s  Z  n  .  X F . 3  2 Sk,x MÀC., x 8760 (5.6) 
k»l j»l i»l k=l i=l  ̂

or 
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^ 
E S S  n  .  X  F  
k=l j=l i=l 

 ̂S E 
k=l 1=1 

K^ X CIK X X (1 - K3) X X 8760 (5.7) 

or 

\ «f 

S  E  E n . .  
k=l j=l 1=1 

N 

= Fijk < S C 
k=l 1=1 Ik 

X AF X 8760 (5.8) 

where 

AF = X Kg X (1 - Kg) X K̂ ) 

= an average overall factor. 

MAĈ  ̂= maximum available generating capacity of the ith 

utility during the kth year in MW. 

= maximum installed generating capacity of the ith 

utility during the kth year in MW. 

Kg = an average cruise rating factor. In the electric power 

industry, the general practice is not to run generating 

units at their maximum capacity in order to avoid certain 

operational problems. Throughout this study, Kg is set 

equal to 0.9, but any value could be used. 

Kg = a reserve factor. According to the Mid-Continent Area 

Realiabillty Coordination Agreement (MARCA), each utility 

company shall reserve 15 percent of its generating units' 
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capacity for reliability purposes. Therefore, was 

accepted as equal to 0.15 (137). 

= an average availability factor of a unit. It covers 

scheduled and unscheduled outage rates of the generating 

units. In this study, the average plant availability 

factor was assumed to be 0.964 for fossil fuel burning 

generating units and 0.900 for nuclear generating units 

because of lack of data (146). 

5. Sulfur emission restriction 

The main fossil fuels used for steam electric power generation are 

bituminous coal, residual oil, and natural gas, each with its own spectrum 

of air pollutants. Typical emissions of these pollutants are carbon 

monoxide (CO), oxides of nitrogen (NÔ ), oxides of sulfur (SÔ ), particu

lates, and hydrocarbons. In this study, because of a lack of necessary 

data, the only environmental restriction applied was that of sulfur 

emission. Other pollution restrictions could be added, however, using 

the technique used for sulfur emissions. 

The oxides of sulfur, principally SÔ , are released primarily from 

residual oil and coal plants. The sulfur contained in oil and coal is 

oxidized to which in turn may be oxidized to SOg. 

To control sulfur dioxide emission, four approaches are being used, 

none of which are complete answers to the problem: 1) using coal that 

naturally has lower sulfur content, 2) removing sulfur from the fuel 

before it is burned, 3) installing devices to collect sulfur dioxide after 

the fuel is burned, 4) blending high-sulfur coal with low-sulfur coal in 
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order to obtain a coal mix which has a permissibly low sulfur content. 

Low-sulfur coal (about one percent sulfur as compared to the nominal 

three percent) is available, especially in Wyoming and Montana, and is 

being used. However, other industries, especially the metallurgical 

industry, also show a high demand for this coal. Therefore, it is impor

tant to recognize that one-percent-sulfur coal provides only a short-term 

limited solution to the problem for two reasons: 1) with electrical 

energy production doubling every ten years, the total emission from 

increasing quantities of low-sulfur coal will become greater than that 

now emitted from smaller quantities of higher-sulfur coal; and 2) present 

U. S. reserves of low-sulfur coal cannot meet total demands indefinitely. 

Some sulfur can be removed from coal before burning using existing 

technology. Sulfur occurs in coal in the pyrite form (FeSg) and as com

plex organic compounds. The pyrite form can be removed by washing and 

grindingj leaving only the organic compounds, which are more difficult to 

remove. Preliminary results of research supported by the National Air 

Pollution Control Administration show that the washing technique can be 

used for about 20 percent of the coal consumed by the utility industry 

and can reduce the sulfur content to approximately one percent (136). 

The process of SO2 collection after the fuel is burned applies to 

both coal and residual oil fuels. Of the many collection processes under 

development, few have reached the successful stage (136). 

For power plant applications, there are no existing systems for the 

control or recovery of the oxides of nitrogen. Presently, power plants 

are being built with higher stacks, depending on broader dispersal of the 
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pollutants as the main method of reducing regional concentration. Also, 

methods are being developed to improve the combustion control and to 

reduce the fire-box temperature in utility boilers as a means of greatly 

reducing the production of nitrogen oxides. 

Federal proposed performance standards (40 Code of Federal Regula

tions, Part 60, Section 43) have been issued for sulfur dioxide emissions 

from fossil fuel burning steam generators of 250 MBtu per hour or more 

heat output. The standards state that emissions shall not exceed 0.80 

pound per MBtu derived from liquid fossil fuel and 1.2 pound per MBtu 

derived from solid fossil fuel. 

In the State of Iowa these standards have been relaxed, according to 

the Rules and Regulations of the Air Quality Commission (136). After 

July 13, 1975, no fossil fuel burning generating units of 250 MBtu per 

hour or more heat input will be allowed to cause the emission of sulfur 

dioxide into the atmosphere in an amount greater than six pounds of sulfur 

dioxide per MBtu of heat input from any solid fuel burning generating 

unit for any combination of fiiels burned. For liquid fuel burning gener

ator units, the emission of sulfur dioxide into the atmosphere in an amount 

greater than 2.5 pounds of sulfur dioxide per MBtu of heat input is 

prohibited. After July 31, 1978, the emission of sulfur dioxide into the 

air will not exceed 5 pounds for any solid fuel burning,generating unit. 

The demand for a fuel is a function of the price of the fuel and an 

average cost penalty for meeting sulfur regulations. This demand may be 

expressed as 

D = f(Rj, ACPj) j = 1, 2, i.., r 
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where 

D = demand for fuel in MBtu per year. 

Rj = price of fuel j in dollars per MBtu. 

ACPj = average cost penalty for fuel j in dollars per MBtu. 

j = index number of competing fuels. 

In the case when available fuels have a higher sulfur content, then 

the real cost of the fuel will be increased by an extra cost of satisfying 

sulfur regulations. This can be formulated such that 

where 

where 

C = cost of stack control of the fuel used by the jth type 
ijk 

of generating unit of the ith utility during the kth 

year in dollars par MBtu. 

TF̂ ĵ  = total fuel used by the jth type of generating unit of 

the ith utility during the kth year in MBtu. 

For the purpose of our study, the restriction on sulfur dioxide 

emission was formulated such that 

TC = TC, + TC (5.9) 
p d sc 

TC = total cost of satisfying sulfur regulations in dollars. 
P 

TĈ  = total cost of desulfurization in dollars. 

TC = total cost of stack controls in dollars. 
sc 

" kSl j5i i5i X TPijk 
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 ̂ \ 

kSl i!l 'ijk * 

\ 
 ̂S Z E TF,,, xPSP.., (5.11) 
k=l j=l i=l 

where 

SP ,, = sulfur content of the fuel used by the jth energy 
ijK 

generating unit of the ith utility during the kth year 

in pounds= 

PSP... = permissible sulfur content of the fuel which should be 
IjK 

used by the jth energy generating unit of the ith 

utility during the kth year in pounds. 

6. Fuel availability restriction 

Fuel availability is an important restriction in long range energy 

planning. It applies not only to oil and natural gas, but also to the low-

sulfur coal supply, \rfiich is limited. In general, this restriction can be 

formulated as 

»y By 

U S E  F , , .  a  2  2  A F E G , .  ( 5 . 1 2 )  
k-l j=l i=l k=l j=l 

or 

 ̂Nf \ 

z z Z F . 
k=l j=l i=l 

S E S  K c  X K, X (FPIA,. + FITI,.) (5.13) 
k=l j=l  ̂ ° JK JK 
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where 

AFEG., = total available fuel for the jth type energy generating 

units of the Iowa Pool during the kth year in MBtu. 

FPIA., = total fuel production in Iowa which can be consumed by 

the jth type energy generating units in the total 

region of Iowa during the kth year in MBtu. 

FITI,. = total fuel imports to Iowa which can be consumed by 

the jth type energy generating units in the total 

region of Iowa during the kth year in MBtu. 

Kg = a per unit electric market factor. Since nine member 

utilities of the Iowa Pool account for about 95 

percent of the electricity generated in the State of 

of Iowa, this factor is assumed equal to 0.95 (for 

studies applied to the entire pool). 

Kg = a per unit fuel consumption factor for each type of fuel 

for electric generation in the State of Iowa. According 

to the statistics of the 1975 Iowa Energy Council's 

Annual Report (134), this factor Kg is equal to 

K, - 0.692 for coal 
6 

Kg ̂  0.203 for natural gas 

Kg = 0.102 for fuel oil 

K, = 1.000 for nuclear. 
0 

Even though the above factors may vary throughout the years, they 

are, for the purpose of our study, assumed to be constants. They could 



www.manaraa.com

152 

be easily adjusted, however, if more accurate data becomes available. 

Historical and forecasted total fuel consumption for the State of 

12 
Iowa in 10 Btu, has been calculated using a least square regression 

analysis of the historical data with a 0.96 correlation coefficient. 

These results are shown in Table 5.3 and Figure 5.4. 

For convenient reference, some nomographs have been developed so that 

one can calculate the amount of fuel consumed annually by one installed 

KW of capacity of generating units with various heat rates at plant 

factors of 0.80, 0.85, and 1.00. These are presented in Appendix G. 

7. Annual electrical energy purchases and sales restrictions 

The total annual electrical energy purchased and sold, and conse

quently transmitted between the utilities of the Pool and the out-of-state 

utilities, shall be restricted by the capacity of tie lines between the 

Iowa Pool and out-of-State utilities such that 

»y By 

S Z P.. a z s TTLC.. X 8760 (5.14) 
k=l i=l k=l i=l 

and 

"y \ "y \ 
S Z S . a Z Z TTLC., 8760 (5.15) 
k=l i=l k=l i=l 

where 

TTLĈ  ̂= total tie line capacity between the ith utility of 

the Iowa Pool and out-of-State utilities for the kth 

year in MWh. 
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Table 5.3. Historical and forecasted total fuel consumption for the State 
of Iowa in 10̂  ̂gtu 

HISTORICAL (138) FORECASTED 

Year 10̂ 2 Btu Year 10̂  ̂Btu 

1953 400.8 1974 878.4 

1954 419.7 1975 901.4 

1955 463.9 1976 924.5 

1956 488.3 1977 947.5 

1957 504.0 1978 970.6 

1958 513.0 1979 993.7 

1959 554.8 1980 1016.7 

1960 554.9 1981 1039.8 

1961 553.3 1982 1062.9 

1962 583.2 1983 1085.9 

1963 599.0 1984 1108.9 

1964 616.0 1985 1132.0 

1965 641.2 

1966 646.6 

1967 701.0 

1968 720.6 

1969 749.1 

1970 810.2 

1971 828.9 

1972 903.5 

1973 866,1 
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o _  

HISTORICAL 

FORECASTED CQf"-"" 

in " 

1953.00 1357.00 1861.00 1865.00 1969.00 1973.00 1977.00 1981.00 
YEAR 

Figure 5.4. Historical and forecasted total fuel consumption for the 
S t a t e  o f  I o w a  i n  1 0 g t u  
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8. General restrictions 

There are also some restrictions on the variables as a result of the 

nature of the linear programming, such as 

In general, the constraint matrix of the program has a simple form. 

The coefficients are mostly zeros and ones, but they do not fall into 

regular patterns because each utility has a different number of genera

ting units. 

Appendix H explains the procedure for performing the LP computations 

using the MPSX system. 

C. The Application of Demand Duration Curves in the Model 

Different types of electrical energy generating units have different 

functions in modern interconnected power systems. The main unit types 

are: 1) fossil fueled units which run basically on fuel oil, coal, and 

gas; 2) hydro units; 3) nuclear reactor units; and 4) special-purpose 

peaking units which are usually combustion turbine or pumped storage units. 

Generally, combustion turbine units have low capital but high 

generation costs; nuclear reactor units have high capital but low gener

ating costs; and hydro units have high or low capital costs depending on 

the site of the hydro units, with almost no generation costs. 

Therefore, combustion turbine units are usually used for peak load 

(5.16a) 

(5.16b) 

(5.16c) 
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periods, fossil fueled units for intermediate load periods, nuclear 

reactor units for base loads, and hydro units used as required, depending 

on costs, unit availability, and the energy constraint. However, because 

of its very small contribution in Iowa, hydro is neglected in this study. 

Consequently, the optimum balance of the units in the system at any time 

will depend on the relative capital and generation costs of the various 

electrical energy generating units. 

In a given power system, the cheapest way of meeting the demand at any 

time is to run the generating units which have the lowest operating costs, 

which is largely dependent on fuel costs. The system dispatcher tabulates 

the generating units in ascending order of marginal operating costs, and 

loads or unloads the units sequentially as the demand rises and falls. 

Figure 5.5 gives a typical table of available plant capacities and an 

annual demand duration curve. In this figure, the system is represented 

by four different types of power generating units. They are, in ascending 

order of marginal operating costs, nuclear, new fossil, old fossil, and 

combustion turbine units. By projecting the plant capacities horizontally 

through the annual demand duration curve, one can find the total operating 

time of each plant for the period represented by the curve. By estimating 

the areas slices out of the load duration curve, one can estimate the 

energy delivered by each generating unit and thus the total fuel costs, 

and consequently the total system operating costs. These costs will be 

at a minimum when this method is used, because the generating units with 

the highest fuel costs, such as old fossil fueled units or combustion 

turbines, will be operated the least. 
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(A) TABLE OF AVAIL/MBLE PLANT CAPACITIES (B) DEMAND DUR/JION CURVE 

COMBUSTION TURBINES 

OLD FOSSIL-FIRED UNITS 

Î 

3 

NEVV FOSSIL-FIRED UN0TS 

NUCLEAR UNITS 

Ln 

TIME 
1 YEAR 

DEMAND DURATION 

Figure 5.5. A typical table of available plant capacities and an annual demand duration curve I 
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The FAM, which uses the LP technique, not only minimizes the fuel 

costs of the Pool or of an individual company for a given period in a 

computerized fashion, but it also gives an optimized solution. According 

to the definition, an optimal solution is a feasible solution which mini

mizes the objective function. 

In view of the general uncertainties associated with long term power 

systems planning, it is reasonable to make some simplifying assumptions. 

Therefore, because of lack of precise data, demand duration curves are 

assumed for each company and fôr the Iowa Pool. The assumed demand dura° 

tion curve for the Iowa Pool is shown in Figure 5.6 as an example. 

Usually each operating utility has records of the actual load duration 

curve experienced by that utility on a yearly, monthly, weekly, or even a 

daily basis. Such detailed information could be projected for each 

utility for future years and used in the optimization study. The method 

of obtaining the optimum would be the same, however, and the assumed 

average load duration was chosen as a comprcmise for this study. 

D. Input Data 

Some of the input data for the FAM model, needed to minimize overall 

fuel costs of the Iowa Pool or of an individual utility by optimum alloca

tion of various fuel mixes among generating units over a period of n years, 

are presented in the tables shown on the following pages. 

The capacity data of the generating units of the nine companies in

volved in this study are shown in Tables 5.4 to 5.12. These data have 

been provided by the individual companies. 
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Figure 5.6. An assumed demand duration curve for the Iwra Pool (141) 
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Capacity data for the generating: units of company number 1 (IPL) 

Station 

Name Unit 
No. 

Minimum 
Load 
(MW> 

Maximum 
Load 
(MW) 

Heat Rate 
(Btu/KWh) 

Unit 
Efficiency 

(TI) 

Fuel Type 

DPS 

Council Bluffs 

Neal 

Sycamore 
I I  

River Hills 

7 40 90 10,400 0.3281 Coal (0.5 Wyo. 
0.5 Iowa) 

6 20 60 11,500 0.2967 I I  I I  I I  I I  

5 20 50 14,000 0.2437 Oil 

3 75 280 9,500 0.3592 Coal (Wyo.) 

2 30 80 10,600 0.3220 I I  I I  

1 20 40 11,500 0.2968 I I  I I  

1 30 105 9,500 0.3592 1 1  I I  

1 35 70 12,000 0.2844 Oil 

2 35 70 12,000 0.2844 I I  

1 15 15 16,000 0.2133 I I  

2 15 15 I I  I I  I I  

3 15 15 I I  I I  I I  

4 15 15 I I  I I  I I  

5 15 15 I I  I I  I I  

6 15 15 I I  f t  ir 

7 15 15 I I  I I  I I  

8 15 15 I I  I I  I f  

c\ 
o 
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t 5.4 

Unit 
leria 
No. 

18 

19 

20 

21 

22 

23 

24 

25 

Continued. 

Station 

Name Unit 
No. 

Minimuai 
Load 
(MW) 

Maximum 
Load 
(MW) 

Heat Rate 
(Btu/KWh) 

Unit 
Efficiency 

(T)) 

Fuel Type 

PURCHASES: 

Cinus 

Cooper 

Firm 

Firm 

Econ. 

1 

1 

1 

2 

1 

50 

100 

0 

0 

0 

150 

350 

75 

70 

500 

Nuclear 
I I  

Coal 

SALES: 

Firm 

Firm 

Firm 

1 

2 

3 

0 

0 

0 

85 

150 

75 

Coal 
I I  

I I  
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Table 5.5. Capacity data for the generating units of company 2 (ISU) 

Unit 
Serial 
No. 

Station 

Name Unit 
No. 

Minimum 
Load 
(MW) 

Maximum 
Load 
(MW) 

Heat Rate 
(Btu/KWh) 

Unit 
Efficiency 
(n) 

Fuel Type 

1 Bridgeport 1  5 20.1 15,700 0.2173 Oil, Coal 

2 I I  2 5 20.1 I I  I I  I I  I I  

3 i l l  3 5 20.9 I t  I I  I I  I I  

4 Burlington 1  70 207 10,082 0.3385 Coal 

5 Centerville 1-3 0 6 12,000* 0.2844 Oil 

6 Oreston 3,4 0 2.5 I f  I I  I I  

7 Washington 1,2 0 2.5 I I  I I  I f  

« a 
8 Neal 3 70 145.6 9,500 0.3592 Coal 

PURCHASES : 

9 Firm - - 20 - - -

10 Firm - - 1 - - -

11 Econ. - - 150* - - -

SALES: 

12 Firm - - 5 - - -

13 Firm - - 8 - - -

14 Firm - - 10 - - -

a 
Assumed value. 
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Table 5.6. Capacity data for the generating units of cwnpany 3 (IPS) 

Station 
Unit 
Serial 
No. 

Nanie Unit 
No. 

Minimum 
Load 
(MI7) 

Maximum 
Load 
(MKT) 

Heat Rate 
(Btu/KWh) 

Unit 
Efficiency 

(ri) 

Fuel Type 

1 Big Sioux 1 4 12 18,000 0.1896 Gas 

2 tt II 2 4 12 II II II 

3 It It 3 4 12 II II II 

4 II It 4 4 13 16,000 0.2133 II 

5 Carroll 1 3 5 11 II 11 

6 II 2 3 5 II II Coal 

7 Eagle Gr. 1 4 10 15,000 0.2275 II 

8 Hawlceye 1 4 10 II ft rr 

9 II 2 4 13 14,000 0.2437 It 

10 KiLrk 1 3 10 15,000 0.2275 Oil 

11 II 5 2 9 II II II 

12 Hayiiard 4 4 11 II II Gas 

13 II 5 4 12 II II It 

14 II 6 5 24 12,000 0.2844 It 

15 II 7 7 57 10,500 0.3250 Goal 

16 Neal 1 50 147 10,000 0.3413 II 

17 II 2 100 330 9,700 0.3518 It 

18 II 3 150 415 9,500 0.3592 ti 

19 It 4 150 226 II II It 
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Table 5.6. Continued. 

Station 
Unit 
Serial 
No. 

Naiae Unit 
No. 

Minlmuni 
Load 
(MW) 

Maximum 
Load 
(MW) 

Heat Rate 
(Btu/KWh) 

Unit 
Efficiency 

(n) 

Fuel Type 

20 Parr Ct. 1 10 17 16,000 0.2133 Oil 

21 II II 2 10 17 If fl II 

22 Waterloo Ct. 1 40 60 11,000 0.3102 tl 

23 II It 2 40 65 It II II 

Die»el 1 1 26 10,000 0.3413 II 
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Table 5.7. Capacity data for the generating units of company 4 (ISP) 

Station 
Unit 

Serial 
No. 

Name Unit 
No. 

Minimum 
Load 
(MW)> 

Maximum 
Load 
(MW> 

Heat Rate 
(Btu/KWh) 

Unit 
Efficiency 

(t]) 

Fuel t; 

1 A. Lea 2 2 4.7 22,000 0.1551 Gas 

2 II 11 3 2 6.0 19,000 0.1796 Oil 

3 11 If 4 3 8.3 15,500 0.2201 II 

4 Kapp 1 6 18.5 14,000 0.2437 Gas 

5 II 
2 55 220 10,300 0.3313 Oil 

6 Dubuque 2 6 15 18,000 0.1896 Coal 

7 II 3 10 30 12,800 0.2666 Gas 

8 II 4 18 35 12,000 0.2844 Oil 

9 Fox Lake 1 4 12 13,700 0.2491 Coal 

10 II 01 
2 4 12 13,700 II Gas 

11 II tl 3 19 84 10,700 0.3189 Oil 

12 Lansing 1 8 17.5 13,300 0.2566 11 

13 ft 
2 4 10.7 13,600 0.2509 Coal 

14 II 3 10 33.8 12,000 0.2844 11 

15 Mason City 2 3 5.5 19,500 0.1750 Gas 

16 ff If 3 4 10.5 18,000 0.1896 Oil 

17 ft fi 4 4 9 15,000 0.2275 II 

18 Montgy. G.T. 1 22 22.2 14,000 0.2437 11 
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Table 5.7. Continued. 

Unit Minimum Maximum Heat Rate Unit Fuel Type 
Serial Name Unit Load Load (Btu/Kî'Jh) Efficiency 
No. No. (MW) (MW) (n) 

19 Fox Lake G.T. 4 21 21.3 14,000 0.2437 Oil 

20 Lansing 4 70® 260 9,500 0.3592 Coal 

a 
Assumed value. 
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Table 5.8. Capacity data for the generating units of company 5 (lELP) 

Station 
Unit 

Serial 
No. 

Name Unit 
No. 

Minimum 
Load 
(MW) 

Maximum 
Load 
(MW) 

Heat Rate 
(Btu/KWh) 

Unit 
Efficiency 

(T|) 

Fuel Type 

1 Sutherland 1 10 31.5 12,309 0.2772 Coal 

2 11 2 10 31.5 12,301 0.2774 M 

3 II 3 45 82.5 10,197 0.3347 II 

4 Prairie Creek 1 7 23.5 12,659 0.2696 II 

5 II II 2 7 23.5 12,662 0.2695 II 

6 II II 3 19 49.5 11,121 0.3069 If 

7 II It 4 55 120 9,945 0.3031 It 

8 6th SI:. 2 3 3 9,034 0.3778 II 

9 II II 4 5 19 16,265 0.2098 II 

10 II II 7 5 19 15,297 0.2231 It 

11 II II 8 8 28 14,566 0.2343 tl 

12 II II 9 0 23 17,200 0.1984 II 

13 Boone 1,2 10 29 14,044 0.2430 II 

14 II 3 0 7 16,800 0.2031 II 

15 Iowa Falls 4 3 9 14,956 0.2282 It 

16 DÂEC 220 476 10,278 0.3320 Nuclear 

17 Diesel -• 0 37.5 12,500 0.2730 Oil 
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Table 5.9. Capacity (lata for the generatinj» units of company 6 (CIPC) 

Station 
Unit Minimum Maximum Heat Rate Unit Fuel Type 
Serial Name Unit Load Load (Btu/KWh) Efficiency 
No. No. (MW) (MW) (Tl) 

1 IIAEC - - 106 10,278 0.3320 Nuclear 

2 P., C. 1 - 20 12,600 0.2708 Coal 

3 II II 2 - 20 11 11 II 

4 II It 3 - 48 11,200 0.3047 II 

5 S. L. 1-4 - 4 12,000 0.2844 Oil 

6 G. T. 1 - 29 14,100 0.2420 II 

7 II II 2 ? 28 II It II 

8 H. R. 1 - 24 10,200 0.3346 II 
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Table 5.10. Capacity data for the generating units of company 7 (IIGE) 

Station 
Unit — Miniminn Maximum Heat Rate Unit Fuel Type 
Serial Name Unit Load Load (Btu/KWh) Efficiency 
No. No. (MW) (MW) (TI) 

1 Coralville 1 0 83 17,000 0.2007 Oil, Gas 

2 M 3 0 14 24,000 0.1422 II It 

3 fl 5 0 21 13,000 0.2625 II 11 

4 tl 6 - 27 12,000 0.2844 II It 

5 II 7 - 28 13,000 0.2625 II II 

6 Moline 1 - 78 17,000 0.2007 II II 

7 Q. C. 1 60 192 11,000 0.3102 Nuclear 

8 tl II 2 II 11 II II II 

9 R. 1 0 24 19,000 0.1796 Gas 

10 II 3 0 26 14,000 0.2437 Coal, Gas 

11 II 4 15 51 12,000 0.2844 II II 

12 II 5 15 143 9,700 0.3518 II II 

13 Riverside 1 0 75 17,000 0.2007 II II 

14 Neal 3 50 151 9,300 0.3670 Coal 

15 M 8 0 40 10,000 0.3413 Oil, Gas 

16 C. B. 3 60 211 9,300 0.3670 Coal 

17 Ott. 1 40 125 It It II 

18 Carroll 1 50 165 11,000 0,3102 Nuclear 
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Table 3.10. Continued. 

Unit .Station Minimum Maximum Heat Rate Unit Fuel Type 

Serial Name: Unit Load Load (Btu/KWh) Efficiency 
No. No. (MW) (MW) (n) 

PURCHASES: 

19 I. P„ - - 25 

1-* 
"«J 
o 
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Table 5.11. Capacity data for the generating units of company 8 (CPA) 

Unit 
Serial 
No. 

Station 
Minimum 
Load 
(Nlf) 

Maximum 
Load 
(MW) 

Heat Rate 
(Btu/KWh) 

Unit 
Efficiency 

(TI) 

Fuel Type Unit 
Serial 
No. 

Name Unit 
No. 

Minimum 
Load 
(Nlf) 

Maximum 
Load 
(MW) 

Heat Rate 
(Btu/KWh) 

Unit 
Efficiency 

(TI) 

Fuel Type 

1 Humljoldt 1 2 10 14,500 0.2353 Gas, Coal 

2 tl 2 2 10 15,000 0.2275 tl II 

3 M 3 3 13 13,500 0.2528 II II 

4 11 4 5 19 13,000 0.2625 II II 

5 Wisdom 1 10 39 11,800 0.2892 II II 

6 DilEC - - 200 10,278 0.3320 Nuclear 

PURCHASES : 

7 U!3BR 1 - 29 - - Hydro 

a 
Assumed values. 
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Table 5.12. Capacity data for the generatinjs units of company 9 (EILP) 

Station 
Unit 
Serial 
No. 

Name Unit 
No. 

Minimum 
Load 
(MW) 

Maximum 
Load 
(MW) 

Heat Rate 
(Btu/KWh) 

Unit 
Efficiency 

(Tl) 

Fuel Type 

1 Fair I 8 25 11,500 0.2967 Coal 

2 11 2 12 40 11,200 0.3046 II 
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Fuel and energy cost forecasts of the companies for the years between 

1975 and 1985 are shown in Tables 5.13 to 5.21. The average fuel cost 

increase is forecast to be about 7 percent from 1975 until 1985. Fuel 

cost and energy purchase cost forecasts, in cents per MBtu and in mills 

per kWh, have been provided by the companies, which considered their long 

term contracts with the supplying companies in making the forecasts. In 

order to construct the model more efficiently, the costs involved are con

verted into dollars per MWh. 

The following tables show the sulfur emissions and restrictions for 

the generating units of company 1 (IHL). Table 5.22 shows the maximum 

level of permissible sulfur emissions, according to EPA Standards and 

State of Iowa regulations, for the coal-burning units of company 1 in 

pounds per MBtu and in pounds per MWh. Also, Table 5.23 indicates the 

maximum level of permissible sulfur emissions for the oil-burning units of 

compsny 1 in pounds per MBtu and in pounds per MWh. 

Table 5.24 and Table 5.25 give the projected level of sulfur emissions 

resulting from the operation of the coal-burning and oil-burning units of 

company 1 for the years from 1975 to 1985 in pounds per MBtu and in pounds 

per MWh, according to projected fuel qualities. 

In Tables 5.24 and 5.25, column 1 gives the years vrtiich are covered in 

this study. Column 2 shows the unit serial numbers of company 1. Column 3 

indicates, in MBtu, the heat input needed to generate one MWh electrical 

energy from each unit. Column 4 gives information on the fuel types used 

in each unit of company 1 for the years from 1975 to 1985. Column 5 re

veals the heat value of the fuel used in MBtu per ton or MBtu per barrel. 
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while column 6 shows the sulfur content of the fuel, in percent. Column 7 

gives the sulfur content of the fuel in pounds per ton or in pounds per 

barrel. Column 8 shows the level of sulfur emission from each unit, in 

pounds per MBtu, which is calculated by dividing each value in column 7 by 

the related value in column 5. Column 9 gives the same sulfur emission 

data in pounds per MHh, which are calculated by dividing the values in 

column 3 by the values in column 8. 
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Table 5.13. Forecasted, fuel and energy cost» for company 1 (IPL) for the years from 1975 to 1985 
in dollars per MKh 

Unit 
Serial 
No. 

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 

1 7.69 8.23 8.81 9.43 - " - - - - -

2 8.51 9.10 9.74 10.42 11.15 11.93 12.77 13.66 14.62 15.64 16.74 

3 44.11 47.20 50.50 54.04 57.82 61.87 66.20 70.84 75.79 81.10 86.78 

4 - -* - - 8.41 9.86 10.55 11.28 12.08 12.92 13.83 

5 7.84 8.39 8.98 9.60 - " - - - - -

6 8.51 9.10 9.74 10.42 1.1.15 11.93 12.77 13.66 14.62 15.64 16.73 

7 - 6.30 6.74 7.21 7.72 8.26 8.84 9.45 10.12 10.83 11.58 

8 37.80 40.44 43.27 46.30 49.55 53.01 56.73 60.70 64.95 69.49 74.36 

9 II 11 II II II II II II II II II 

10 50.40 53.93 57.70 61.74 66.06 70.69 75.64 80.93 86.60 92.66 99.15 

11 ft It II II II If II II II II II 

12 II II II II II II II II II II II 

13 ir It II II II II II II II II II 

14 II II II II II II II II II II II 

15 II II II II II II II II II II II 

16 II II II II II II II II II II II 

17 II II II II II II II II II II II 
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Table 5.13. Continued. 

Unit 
Serial 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 
No. 

PURCHASES: 

18 — •• - - - — - - - 3.70 3.88 

19 1.93 2.02 2.12 2.23 2.34 2.46 2.58 3.05 3.20 3.36 3.53 

20  — -  — 6 .20  6 .20  — — — — — — 

21 -  — — -  — — -  10.10 10.10 -

22 40.00 42.80 45.79 49.00 52.43 56.10 60.02 64.23 68.72 73.53 78.68 

SALES: 

23 - 5.50 5.50 - -- -- -- -

24 — — 6.20 6.20 — — — — — 

25 — — — — — 6.60 6.60 — — — — 
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Table 5.14. Forecasted fuel and energy costs for company 2 (ISU) for the years from 1975 to 1985 
in dollars per MWh® 

Unit 
Serial 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 
No. 

1 26.53 28.39 30.37 32.50 34.77 37.21 39.81 42.60 45.58 48.77 52.19 

2 II II II II II II II II II II II 

3 11 It II II II II II II II II II 

4 6.04 6.47 6.92 7.41 7.92 8.48 9.07 9.71 10.39 11.12 11.89 

5 25.20 26.96 28.85 30.74 32.89 35.20 37.66 40.40 43.12 47.03 50.32 

6 II 111 II II II II II II II II II 

7 II It II II II II II II II II II 

8 - 6.30 6.74 7.21 7.72 8.26 8.83 9.45 10.12 10.82 11.58 

PURCHASES: 

9 5.5 5.88 - - - - - - - - . -

10 5.5 5.88 6.29 6.73 7.20 7.71 8.25 8.83 9.45 10.11 10.82 

11 50.40 53.93 57.70 61.74 66.06 70.69 75.66 80.93 86.60 92.66 99.15 

SALES: 
b 

12 6.2 
" b 

- - - - - - - - -

13 - 6.6 
" b 

- - - - - - - -

14 - - 6.9 - - - - - - - -

^7 percent annual cost increase is assumed. 

Assumed values. 
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Table 5.15. Forecasted fuel and energy costs for company 3 (IPS) for the years from 1975 to 1985 
in dollars per MWh 

Unit 
Serial 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 
No. 

1 9.00 — - - - - - - - - -

2 9.00 " - - - - - -• - - -

3 9.00 - - - - - - - - - -

4 8.00 — - - - • - - " - - -

5 15.52 17.12 18.72 20-64 22.72 24.96 - -• - - -

6 tl II II II II II 
- " - - -

7 15.84 17.44 19.20 21.12 23.30 25.44 - - - -

8 16.16 17.76 19.52 21.44 23.68 26.08 - ~ - - -

9 14.14 15.54 17.08 18.76 20.72 22.82 - •• - - -

10 34.20 37.65 41.40 45.45 - - - - - -

11 34.20 37,65 41.40 45.45 - - - — - - -

12 7.65 8.40 - - - - - -- - - -

13 7.65 8,40 - - - - - •• - - -

14 6.12 6.72 33.12 36.43 40.07 44.08 48.49 53.34 58.67 64.54 71.00 

15 11.13 12.24 13.46 14.81 16.29 17.92 19.71 21.69 23.86 26.24 28.87 

16 5.90 6.49 7.13 7.85 8.63 9.50 10.45 11.49 12.64 13.91 15.30 

17 5.72 6.29 6.92 7.61 8.37 9.21 10.13 11.15 12.26 13.49 14.84 

18 - 6.16 6.78 7.46 8.20 9.02 9.93 10.92 12.01 13.21 14.53 

19 •• _ - - II II II II 11 II tl 
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Table 5.15. Continued» 

Unit 
Serial 
No. 

1.975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 

20 36.48 40.13 4,1.14 48.55 53.41 58.75 64.63 71.09 78.20 86.02 94.62 

21 II III II II It II II II II II II 

22 25.08 27.58 30.34 33.38 36.71 40.39 44.43 48.87 53.76 59.13 65.05 

23 II Ul II II II II II II II II II 

24 22.80 25.08 27.58 30.34 33.38 36.71 40.39 44.43 48.87 53.76 59.13 
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Table 5.16. Forecasted fuel and energy costs for 
in dollar» per Mfh 

Unit 
Serial 
No. 

1975 1976 1977 1978 1979 

1 12.32 13.18 14.10 15.09 16.15 

2 45.36 48.53 51.93 55.56 59.45 

3 32.56 34.84 37.28 39.73 42.51 

4 7,84 8.39 8.97 9.60 10.27 

5 21.63 23.14 24.76 26.39 28.24 

6 12-87 13.77 14.73 15,76 17.06 

7 7.16 7.67 8.20 8.78 9.39 

8 25.20 26.96 28.85 30.74 32.90 

9 9.79 10.48 11.21 12.00 12.98 

10 7.67 8.21 8.78 9.40 10.05 

11 25.54 27.33 29.24 31.29 33.48 

12 27.93 29.88 31.97 34.08 36.46 

13 9.72 10.40 11.13 11.91 12.89 

14 8.58 9.18 9.82 10.51 11.37 

15 10.92 11.158 12.50 13.37 14.31 

16 42.96 45.97 49.19 52.63 56.31 

17 31.50 33.70 36.06 38.43 41.12 

18 29.40 31.45 33.65 35.87 38.38 

company 4 (ISP) for the years from 1975 to 1985 

1980 1981 1982 1983 1984 1985 

17.28 

63.09 

45.48 

10.99 

30.22 

18.25 

10.05 

35.20 

13.89 

10.76 

35.83 

39.01 

13.79 

12.17 

15.31 

60.26 

44.00 

41.06 

18.49 

67.50 

48.67 

11.77 

32.33 

19.53 

10.75 

37.67 

14.87 

11.51 

38.33 

41.75 

14.76 

13.02 

16.38 

64.47 

47.08 

43.94 

19.78 

72.23 

52.08 

12.59 

34.60 

20.90 

11.51 

40.30 

15.91 

12.32 

41.02 

44.67 

15.79 

13.93 

17.53 

68.99 

50.37 

47.02 

21.17 

77.29 

55.72 

13.47 

37.02 

22.36 

12.31 

43.12 

17.02 

13.18 

43.89 

47.79 

16.90 

14.91 

18.76 

73.82 

53.90 

50.31 

22.65 

82.70 

60.78 

14.41 

40.38 

23.93 

13.17 

47.04 

18.21 

14.10 

46.96 

52.13 

19.08 

15.95 

20.07 

78.99 

58.79 

54.87 

24.24 

88.49 

65.03 

15.42 

43.20 

25.60 

14.10 

50.33 

19.49 

15.09 

50.25 

55.78 

19.34 

17.07 

21.48 

84.52 

62.91 

58.71 
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Table 5.16. Continued. 

Unit 
Serial 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 
No. 

19 29.40 31.45 33.65 35.87 38.38 41.06 43.94 47.02 50.31 54.87 58.71 

20 7.77 8.32 9.00 9.63 10-31 11.03 11.80 12.63 13.51 
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Figure 5.17. Forecasted fuel and energy costs for company 5 (lELP) for the years from 1975 to 1985 
in dollars per MWh 

Unit 
Serial 1975 1976 1977 1978 19/9 1980 1981 1982 1983 1984 1985 
No. 

1 13.05 13.83 14.66 15.54 16.47 17.46 18.51 19.62 20.80 22.04 23.37 

2 13.04 13.82 14.65 15.53 16.46 17.45 18.50 19.61 20.79 22.03 23.35 

3 10.80 11.45 12.14 12.87 13.64 14.46 15.33 16.25 17.22 18.26 19.35 

4 13.41 14.22 15.07 15.98 16.94 17.95 19.03 20.17 21.38 22.67 24.03 

5 13.42 14.23 15.08 15.99 16.95 17.96 19.04 20.18 21.39 22.68 24.04 

6 11.78 12.49 13.24 14.03 14.88 15.77 16.72 17.72 18.78 19.91 21.11 

7 11.93 12.65 13.41 14.21 15.06 15.97 16.93 17.94 19.02 20.16 21.37 

8 9.57 - - - - - - - - - -

9 17.24 18.27 19.37 20.53 21.76 23.07 24.46 25.92 27.48 29.13 30.88 

10 16.21 17.18 18.22 19.31 20.47 21.70 23.00 24.38 25.84 27.39 29.04 

11 15.44 16.36 - - - - - - - - -

12 18.23 19.32 20.48 21.71 23.02 24.40 25.86 27.41 29.06 30.80 32.65 

13 16.15 17.12 18.14 19.23 20.39 21.61 22.91 24.28 25.74 27.28 28.92 

14 19.32 20.48 21.71 23.01 24.39 25.86 27.41 29.05 30.80 32.64 34.60 

15 17.19 18.23 19.32 20.48 21.71 23.01 24.39 25.86 27.41 29.05 30.80 

16 2.71 2.82 2.93 3.05 3.17 3.30 3.45 3.57 3.71 3.86 4.01 

17 29.75 31.57 33.43 35.43 37.56 39.81 42.20 44.73 47.42 50.26 53.28 
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Table 5.18. Forecasted fuel and energy costs for company 6 (CIPC) for the years from 1975 to 1985 
in dollars per 

Unit 
Serial 1.975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 
No. 

1 2.23 2.38 2.55 2.73 2.92 3-12 3.34 3.58 3.83 4.10 4.38 

2 12.41 13.28 14.21 15.20 16.26 17.40 18.62 19.93 21.32 22.81 24.41 

3 11 II It II II II 11 II 11 II II 

4 11.03 11.80 12.63 13.51 14.46 15.47 16.55 17.71 18.95 20.28 21.70 

5 22.57 24.15 25.84 27.65 29.59 31.66 33.88 36.25 38.79 41.50 44.41 

6 26.52 28.38 30.37 32.49 34.77 37.20 39.81 42.59 45.58 48.77 52.18 

7 II ri 11 ir It If IF II II II II 

8 19.19 20.53 21.97 23.50 25.15 26.91 28.79 30.81 32.97 35.97 37.75 
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Table 5.19. Forecasted fuel and energy costs for 
in dollars per MAi 

Unit 
Serial 1975 1976 1977 1978 1979 
No. 

1 32.30 33.92 35.61 37.38 39.27 

2 45.60 47.88 - - -

3 24.70 25.93 27.23 28.58 30.03 

4 22.80 23.94 25.14 26.37 27.72 

5 24.70 25.93 27.23 28.58 30.03 

6 32.30 33.92 35.61 37.38 39.27 

7 2.31 2.35 2.40 2.45 2.50 

8 II II II II II 

9 11.40 11.97 12.57 13.20 13.85 

10 9.80 10.29 10.80 11.34 11.91 

11 8.40 8.82 9.26 9.72 10.21 

12 6.79 7.13 7.49 7.86 8.25 

13 10.20 10.71 11.24 11.80 12.40 

14 - 5.37 5.64 5.92 6.21 

15 - 19.95 20.95 21.99 23.10 

16 - - - - 6.78 

17 - - - - -

18 — « 

company 7 (IIGE) for the years from 1975 to 1985 

1980 1981 1982 1983 1984 1985 

41.22 

31.52 

29.10 

31.52 

41.22 

2.55 

II 

14.55 

12.50 

10.72 

8.66 

13.01 

6.52 

24.25 

7.12 

43.28 

33.10 

30.55 

33.10 

43.28 

2.60 
II 

15.27 

13.13 

11.25 

9.10 

13.66 

6.85 

25.46 

7.47 

If 

45.44 

34.75 

32.07 

34.75 

45.44 

2.65 

II 

16.04 

13.79 

11.82 

9.55 

14.35 

7.19 

26.73 

7.85 

If 

47.72 

36.49 

33.68 

36.49 

47.72 

2.70 

II 

16.84 

14.48 

12.41 

10.03 

15.07 

7.55 

28.07 

8.24 

ft 

50.10 

38.31 

35.36 

38.31 

50.10 

2.76 

It 

17.68 

15.20 

13.03 

10.53 

15.82 

7.93 

29.47 

8.65 

If 

52.61 

40.26 

37.16 

40.26 

52.61 

2.81 
II 

18.57 

15.96 

13.68 

11.06 

16.61 

8.33 

30.95 

9.09 

ir 
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Table 5.19. Continued. 

Unit 
Serial 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 
No. 

PURCHASES: 

19 5.00 5.00 
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Table 5.20. Forecasted fitel and energy costs for company 8 (CPA) for the years from 1975 to 1985 
in dollars per MÏTh 

Unit 
Serial 
No. 

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 

1 12.40 13.34 19.28 21.17 22.48 23.92 25.37 26.82 28.56 30.16 32.04 

2 12.82 13,80 19.95 21.90 23.25 24.75 26.25 27.75 29.55 31.20 33.15 

3 11.54 12.42 17.95 19.71 20.92 22.27 23.62 24.97 26.59 28.08 29.83 

4 11.11 11.96 17.29 18.98 20.15 21.45 22.75 24.05 25.61 27.04 28.73 

5 10.09 10.86 15.69 17.23 18.29 19.47 20.65 21.83 23.24 24.54 26.07 

6 2.71 2.82 2.93 3.05 3.17 3.30 3.43 3.57 3.71 3.80 4.01 

PURCHAoES; 

7 2.61 2.71 2.81 2.91 3.01 3.11 3.21 3.31 3.41 3.51 3.61 

Table 5.21. Forecasted fuel and energy costs for company 9 (EILP) for the years from 1975 to 1985 
in dollars per MHh 

Unit 
Serial 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 
No. 

1 8.62 9,.20 9.77 10.80 11.50 12.30 13.22 14.14 15.06 16.21 17.25 

o II II II II II II II II II II II 
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Table 5.22. llaximum peimlssable sulfur emissions for the coal burning units of company 1 according 
to EPA standards and State of Iowa regulations in lbs per MBtu and in lbs per NWh 

Unit Unit 
Serial Efficiency 
No. (xO 
Col. 1 Col. 2 

K^/nj 

(MBtii/MWh) 
Col. 3 

Permissible Sulfur Emission 
Unit Unit 

Serial Efficiency 
No. (xO 
Col. 1 Col. 2 

K^/nj 

(MBtii/MWh) 
Col. 3 

EPA Standard Iowa Regulation 
Unit Unit 

Serial Efficiency 
No. (xO 
Col. 1 Col. 2 

K^/nj 

(MBtii/MWh) 
Col. 3 

(lb/MBtu) 
Col. 4 Col. 

(lb/MBtu) 
5 = Col. 3 X Col. 

(lb/MBtu) (lb/MBtu) 
4 Col. 6 Col. 7 = Col. 3 x Col. 6 

1 0.3281 10.4 1.2 12.48 5.0 52.0 

2 0.2967 11.5 ir 13.80 " 57.5 

4 0.3592 9.5 ir 11.40 " 47.5 

5 0.3220 10.5 m 12.72 " 53.0 

6 0.2968 11.5 ir 13.80 " 57.5 

7 0.3592 9.5 IP 11.40 " 47.5 
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Table 5.23. Maximum pemissable sulfur emissions for the oil burning units of company 1 according 
Co EPA standards and State of Iowa regulations in lbs per IdBtu and in lbs per MWh 

Unit Unit 
Serial Efficiency 

Permissible Sulfur Emission 
Unit Unit 
Serial Efficiency 

EPA. Standard Iowa Regulation 

No. 
Col. 1 

(Tl) 
Col. 2 

(MBtu/MWh) 
Col. 3 

(Ib/MBtu) 
Col. 4 

(Ib/MBtu) 
Col. 5 = Col. 3 X Col. 

(Ib/MBtu) 
4 Col. 6 Col. 

(Ib/MBtu) 
7 = Col. 3 X Col. 6 

3 0.2437 14.0 0.8 11.2 2.5 35.0 

8 0.2844 12.0 1: 9.6 II 30.0 

9 tl II II II II 30.0 

10 0.2133 l<).0 It 12.8 II 40.0 

11 II II II II n II 

12 II tl II II It II 

13 II II tl II II II 

14 II II II It tl II 

15 II II II II II It 

16 11 11 II It tl II 

17 II II II 11 tl It 



www.manaraa.com

Table 5.24. Projected sulfur emissions resulting from the operation of the coal burning units of 
company 1 for the years from 1975 to 1985 in pounds per MBtu and in pounds per MWh, 
according to project coal qualities 

Unit Heat Sulfur Content Sulfur Emission 
Year Serial Coal Value of of Coal from the Unit 

No. Type No. (MBtu/rlWnJ Type UOcI L 

(MB tu/ ton) (%) (lb/ton) (lb/MB tu) (Ib/MWh) 
Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8 Col. 9 

=Col. 7/Col. 5 «Col. 3/Col. 8 

1975 1 10.4 0»5 Iowa 17.6 1.925 38.5 2.187 22.75 
+ 0.5 Wyo. 

tl 2 11.5 II 17.6 1.925 38.5 2.187 25.15 

It 4 9.5 Wyoming 20.6 0.9 18.0 0.874 8.3 

II 5 10.6 II 20.6 0.9 18.0 0.874 9.26 

II 6 11.5 II 20.6 0.9 18.0 0.874 10.05 

1976 1 10.4 0.5 lCT?a 17.6 1.925 38.5 2.1875 22.75 
+ 0.5 Wyo. 

ft 2 11.5 II 17.6 1.925 38.5 2.187 22.75 

II 4 9.5 Wyoming 20.6 0.55 11.0 0.679 6.45 

II 5 10.(5 11 20.6 0.55 11.0 0.679 6.45 

II 6 11.5 ir 20.6 0.55 11.0 0.679 6.45 

II 7 9.5 II 20.6 0.9 18.0 0.874 8.3 

1977 1 10.4 0.5 Iowa 17.6 1.925 38.5 2.1875 22.75 
+ 0.5 Wyo. 

II 2 11.5 II 17.6 1.925 38.5 2.187 22.75 

II 4 9.5 WyOTiing 20.6 0.55 11.0 0.679 6.45 

II 5 10.6 II 20.6 0.55 11.0 0.679 6.45 
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Table 5.24. Continued. 

Unit • Heat: Suljfur Content Sulfur Emission 
Year Serial Kl/Tlj Coal Value of of Goal from the Unit 

No. /lurD«««« /UT.TlU \ Type No. Type (.̂ Oâ JL 

(MBtu/Con) (%) (Ib/ton) (Ib/MBtu) (Ib/MWh) 
Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8 Col. 9 

=Col. 7/Col. 5 =Col. 3/Col. 8 

1977 6 11.5 Wyoming 20.6 0.55 11.0 0.679 6.45 

II 7 9.5 II 20.6 0.9 18.0 0.874 8.3 

1978 1 10.4 0.5 lawa 17.6 1.925 38.5 2.187 22.75 
+ 0.5 wyo. 

II 2 11.5 Il 17.6 1.925 38.5 2.187 22.75 

II 4 9.5 Wyoming 20.6 0.55 11.0 0.679 6.45 

II 5 10.6 If 20.6 0.55 11.0 0.679 6.45 

II 6 11.5 II 20.6 0.55 11.0 0.679 6.45 

It 7 9.5 II 20.6 0.9 18.0 0.874 8.3 

1979 1 10.4 0.5 lowa 18.4 2.1 42.0 2.282 23.74 
+ 0.5 Wyo. 

if 2 11.5 M 18.4 2.1 42.0 2.282 26.25 

II 4 9.5 Wyoming 16.2 0.55 11.0 0.679 6.45 

II 5 10.6 II 16.2 0.55 11.0 0.679 6.45 

If 6 11.5 II 16.2 0.55 11.0 0.679 6.45 

II 7 9.5 II 20.6 0.9 18.0 0.874 8.3 

1980 1 10.4 Ou5 lowa 18.4 2.1 42.0 2.282 23.74 
+ 0.5 Wyo. 

II 2 11.5 Il 18.4 2.1 42.0 2.282 26.25 
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Table 5.24. Continued. 

Unit . Hetit 
Year Serial i j Coal Value of 

No. (MBtu/MSh) Type Coal 
(MB tu/ton) 

Col. 1 Col. 2 Col. 3 Col. 4 Col,, 5 

1980 4 9.5 Wyoming 16.% 

" 5 10.6 " 16.% 

" 6 11.5 " 16.2 

" 7 9.5 " 20.G 

1981 1 10.4 0.5 lcn?a 18.4 
+ 0.5 Wyo. 

" 2 11.5 " 18.4 

•' 4 9.5 Wyoming 16.2 

" 5 10.6 " 16.2 

" 6 11.5 " 16.2 

" 7 9.5 " 20.(3 

1982 1 10.4 0.5 ICNfa 18.4 
-8- 0.5 Wyo. 

" 2 11.5 " 18.4 

" 4 9.5 Wyoming 16.2 

" 5 10.6 " 16.2 

" 6 11.5 " 16.2 

" 7 9.5 " 20.6 

Sulfur Content 
of Coal 

Sulfur Emission 
from the Unit 

(%) (lb/ton) (Ib/MBtu) 
Col. 6 Col. 7 Col. 8 

=Col. 7/Col. 5 

(Ib/MWh) 
Col. 9 
=Col. 3/Col. 8 

0.55 

0.55 

0.55 

0.9 

2 . 1  

11.0 

11.0 

11.0 

18.0 

42.0 

0.679 

0.679 

0.679 

0.874 

2.282 

6.45 

6.45 

6.45 

8.3 

23.74 

2.1 

0.55 

0.55 

0.55 

0.9 

2.1 

42.0 

11.0 
11.0 

11.0 

18.0 

42.0 

2.282 

0.679 

0.679 

0.679 

0.874 

2.282 

26.25 

6.45 

6.45 

6.45 

8.3 

23.74 

2.1 

0.55 

0.55 

0.55 

0.9 

42.0 

11.0 

11.0 

11.0 

18.0 

2.282 

0.679 

0.679 

0.679 

0.874 

26.25 

6.45 

6.45 

6.45 

8.3 
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Table 5.24. Continued. 

Unit „ /„ Hea t 
of Year Serial Coal Value 

No. (MBtu/M 

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 

1983 1 10.4 0.5 Iowa 18.4 
+ 0.5 Wyo. 

" 2 11.5 " 18.4 

" 4 9.5 Wyoming 16.2 

" 5 10.6 " 16.5. 

" 6 11.5 " 16.2; 

" 7 9.5 " 20.& 

1984 1 10.4 0.5 Iowa 18.4 
+ 0.5 Wyo. 

" 2 11.5 " 18.4 

" 4 9.5 Wyoming 16.2'. 

" 5 10.6 " 16.2: 

" 6 11.5 " 16.2. 

" 7 9.5 " 20.6 

1985 1 10.4 0.5 Iowa 18.4 
+ 0.5 Wyo. 

" 2 11.5 " 18.4 

" 4 9.5 Wyoming 16.21 

•' 5 10.6 " 16.21 

Sulfur Content 
of Coal 

Sulfur Emission 
from the Unit 

(%) (lb/ton) (Ib/MBtu) (Ib/MWh) 
Col. 6 Col. 7 Col. 8 Col. 9 

=Col. 7/Col. 5 =Col. 3/Col. 8 

2.1 42.0 2.282 23.74 

2.1 42.0 2.282 26.25 

0.55 11.0 0.679 6.45 

0.55 11.0 0.679 6.45 

0.55 11.0 0.679 6.45 

0.9 18.0 0.874 8.3 

2.1 42.0 2.282 23.74 

2.1 42.0 2.282 26.25 

0.55 11.0 0.679 6.45 

0.55 11.0 0.679 6.45 

0.55 11.0 0.679 6.45 

0.9 18.0 0.874 8.3 

2.1 42.0 2.282 23.74 

2.1 42.0 2.282 26.25 

0.55 11.0 0.679 6.45 

0.55 11.0 0.679 6.45 
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Table 5.24. Continued.. 

Unit , 
Year Serial ''j 

No. (MBtu/lftJh) 

Col. I Col. 2 Col. 3 

Coal 
Type 

Col. 4 

Heat 
Value of 
Coal 

(MBtu/ton) 
Col. 5 

Sulfur Content 
of Coal 

(lb/ton) 
Col. 7 Col. 6 

Sulfur Emission 
from the Unit 

(Ib/MBtu) 
Col. 8 
«Col. 7/C0I.5 

(Ib/MWh) 
Col. 9 
=Col. 3/C0I.8 

1985 
I t  

6 

7 

11.5 

9.5 

Wyoming 
t l  

16.2 
20.6 

0.55 

0.9 

11.0 

18.0 

0.679 

0.874 

6.45 

8.3 
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Table 5.25. Projected sulfur emissions resulting from the operation of the oil burning units of 
company 1 for the years from 1975 to 1985 in pounds per MBtu and in pounds per MWh, 
according to projected oil qualities 

Unit V i»r\ Heat Sulfur Content Sulfur Emission 
Year Serial Oil Value of of Oil from the Unit 

Type n f  1  No. V.HDtu/fIWn/ Type U3.1 
(MBtu/Bbl) (%) (Ib/Bbl) (Ib/MBtu) (Ib/MWh) 

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8 Col. 9 
= Col. 7/Col. 5 = Col. 3 X Col. 8 

1975 3 14.0 n 5.67 0.4 1.34 0.237 3.32 
I I  8,9 12.0 M  5.67 I I  I I  " 2.84 
I I  10-17 16.0 I I  5.67 I I  I I  " 3.79 

1976 3 14.0 I I  5.67 I I  I t  " 3.32 
I I  8,9 12.0 I I  5.67 I f  I I  " 2.84 

10-17 16.0 n 5.67 I I  I I  " 3.79 

1977 3 14.0 I I  5.67 I I  I I  " 3.32 
I I  8,9 12.0 I I  5.67 I t  11 " 2.84 
I I  10-17 16.0 I t  5.67 I I  I I  " 3.79 

1978 3 14.0 I t  5.67 I I  I f  " 3.32 
I I  8.9 12.0 I I  5.67 11 I I  " 2.84 
I I  10-17 16.0 I f  5.67 I t  I t  " 3.79 

1979 3 14.0 I I  5.67 I I  I I  " 3.32 
I I  8,9 12.0 I I  5.67 I f  I I  2.84 
I I  10-17 16.0 I I  5.67 11 I I  " 3.79 

1980 3 14.0 I f  5.67 I I  I I  " 3.32 
I I  8,9 12.0 11 5.67 I f  I f  " 2.84 
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Table 5.25. Continued. 

„ F 
Year Serial ^ 'j Oil 

No. (MBtu/MMlci) Type 

Col. 1 Col. 2 Col. 3 Col. 4 

Heat 
Value ol: 
Oil 

(MBtu/Bbl) 
Col. 5 

Sulfur Content 
ol: Oil 

Sulfur Emission 
from the Unit 

(%) (Ib/Bbl) (Ib/MBtu) (Ib/MWh) 
Col. 6 Col. 7 Col, 8 Col. 9 

= Col. 7/Col. 5 = Col. 3 X Col. 8 

1980 10-17 16.0 #2 5.67 0.4 1.34 0.237 3.79 

1981 3 14.0 I I  5.67 I t  I I  I t  3.32 
I I  8,9 12. CI I I  5.67 fl I I  I t  2.84 
I I  10-17 16.0 I I  5.67 I I  I I  I t  3.79 

1982 3 14.0 I I  5.67 11 11 11 3.32 
I I  8,9 12.0 I I  5.67 I I  I I  11 2.84 
•( 10-17 16.0 I I  5.67 11 I I  11 3.79 

1983 3 14.0 I I  5.67 11 I t  11 3.32 
I I  8,9 12.0 I I  5.67 I I  I t  I I  2.84 
I I  10-17 16.0 I I  5.67 I I  11 I I  3.79 

1984 3 14.0 I t  5.67 11 I I  I I  3.32 
I I  8.9 12.0 I I  5.67 I f  I I  I t  2.84 
I I  10-17 16.0 1 1  5.67 r i  I t  I f  3.79 

1985 3 14.0 I I  5.67 11 I I  I t  3.32 
I I  8,9 12.0 I I  5.67 1 1  I I  I I  2.84 
I I  10-17 16.0 I I  5.67 I I  11 I I  3.79 
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VI. THE RESULTS OF ELECTRICAL ENERGY MODEL APPLICATIONS 

In this chapter a number of the application results are presented 

which illustrate the usefulness of the electrical energy model which is 

presented in Chapter V. 

The model has been applied to each of the nine utility companies 

individually in order to minimize their overall fuel costs through opti

mum allocation of various fuel mixes among generating units of each utili

ty. The results are shown in Table 6.1. The table reveals the present 

worth of annual optimum total fuel costs in dollars for each company with 

independent optimum operation of its generation units for the years from 

1975 to 1985. 

The model has also been applied to the leva Feel under the assumption 

that the Pool members will act as a united group in order to minimize their 

overall fuel costs by optimum allocation of various fuel mixes among gen

erating units of the Pool. Table 6.2 shews the optimum annual energy 

generation in MWh and the present worth of total fuel costs, in dollars, 

of optimum energy generation for the companies, with optimum Iowa Pool 

operation, for the years from 1975 to 1985. Table 6.3 shows the comparison 

of the forecasted results of independent operation with those of Pool 

operation. It shows the total.optimum energy generation for the whole 

Pool in MWh and the present worth of annual optimum total fuel costs, in 

dollars, for the optimum independent operation of the companies, and for 

their cooperative optimum operation as the Iowa Pool for the years from 

1975 to 1985. The results have been plotted on Figure 6.1 As can be seen 

from Table 6.3 and Figure 6.1, there is a considerable savings to the com-
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Table 6.1. Forecasted present worth of annual optimum total fuel costs, in 
dollars, for the companies with independent optimum operation 
for the years from 1975 to 1985 

Company Year 
No. 

Annual 
Energy Generation 

(MWh) 

Total Fuel 
Costs 
($) 

Present 
Worth 
Factor 

Present Worth of 
Total Fuel Costs 

($) 

1 1975 4,111,000.0 43,199,182.7 0.9259 39,998,123.3 

1976 4,423,000.0 50,787,970.2 0.8573 43,540,526.9 

1977 4,769,000.0 61,539,257.3 0.7938 48,849,862.4 

1978 5,152,000.0 64,288,429.4 0.7350 47,251,995.6 

1979 5,534,000.0 88,589,663.0 0.6806 60,294,124.6 

1980 5,945,000.0 126,830,113.0 0.6302 79,928,337.2 

1981 6,396,000.0 134,375,298.2 0.5835 78,407,986.5 

1982 6,877,000.0 159,266,829.8 0.5403 86,051,868.1 

1983 7,353,000.0 164,168,590.1 0.5002 82,117,128.8 

1984 7,893,000.0 210,527,705.3 0.4632 97,516,433.1 

1985 8,466,000.0 256,690,856.7 0.4289 110,094,708.4 

Total 66,919,000.0 1,380,850,679.7 - 774,051,094.9 

2 1975 1,488,000.0 12,251,601.1 0.9259 11,343,757.5 

1976 1,706,000.0 14,525,175.9 0.8573 12,452,433-3 

1977 1,907,000.0 17,205,297.9 0.7938 13,657,565.5 

1978 2,039,000.0 20,541,137.0 0.7350 15,097,735.7 

1979 2,176,000.0 23,220,984.8 0.6806 15,804,202.3 

1980 2,324.000.0 26,310,212.9 0.6302 16,580,696.2 

1981 2,482,000.0 32,221,790.3 0.5835 18,801,414.6 

1982 2,652,000.0 41,774,310.3 0.5403 22,570,659.9 

1983 2,835,000.0 56,703,426.4 0.5002 28,363,053.9 

1984 3,031,000.0 78,891,076.7 0.4632 36,542,346.7 

1985 3,242,000.0 105,329,077.8 0.4289 45,175,641.5 

Total 25,882,000.0 428,011,555.5 - 236,389,507.1 

3 1975 2,896,000.0 24,060,496.3 0.9259 22,277,613.5 

1976 3,293,000.0 27,178,610.2 0.8573 23,300,222.5 

1977 3,729,000.0 35,369,290.0 0.7938 28,076,142.4 
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Table 6.1. Continued. 

No. 

Total 

4 

Total 

5 

Year Annual 
Energy Generation 

(MWh) 

Total Fuel 
Costs 
($) 

Present Present Worth of 
Worth Total Fuel Costs 
Factor ($) 

1978 4,124,000.0 39,943,010.1 0.7350 29,358,112.4 

1979 4,432,000.0 45,759,035.5 0.6806 31,144,212.1 

1980 4,742,000.0 54,504,213.7 0.6302 34,348,555.5 

1981 5,116,000.0 60,807,657.4 0.5835 35,481,268.1 

1982 5,516,000.0 71,632,133.7 0.5403 38,702,841.8 

1983 5,929,000.0 84,990,860.4 0.5002 42,512,428.4 

1984 6,392,000.0 101,373,117.1 0.4632 46,956,027.8 

1985 6,898,000.0 120,083,720.2 0.4289 51,503,907.6 

53,085,000.0 665,644,354.6 383,661,332.1 

1975 3,178,000.0 61,779,607.2 0.9259 57,201,738.3 

1976 3-369.000,0 71,976,832.7 0.8573 61,705,738.7 

1977 3,571,000.0 57,684,841.3 0.7938 45,790,227.0 

1978 3,785,000.0 64,491,834.8 0.7350 47,401,498.6 

1979 4,013,000.0 72,667,958.7 0.6806 49,457,812.7 

1980 4,253,000.0 85,103,182.7 0.6302 53,632,025.7 

1981 4,508,000.0 99,509,699.0 0.5835 58,063,909.4 

1982 4,779,000.0 116,261,979.9 0.5403 62,816,347.7 

1983 5,065,000.0 137,915,424.9 0.5002 68,985,295.5 

1984 5,363,000.0 171,884,571.2 0.4632 79,616,933.4 

1985 5,692,000.0 215,929,802.4 0.4289 92,612,292.3 

47,576,000.0 1,155,205,739.2 677,283,819.3 

1975 3,802,855.1 19,910,254.8 0.9259 18,434,904.9 

1976 4,101,635.3 21,760,422.2 0.8573 18,655,210.0 

1977 4,488,260.4 26,253,422.2 0.7938 20,839,966.5 

1978 5,308,937.9 39,000,801.8 0.7350 28,665,589.3 

1979 5,050,422.2 37,308,114.0 0.6806 25,391,902.4 

1980 5,492,763.8 46,509,380.7 0.6302 29,310,211.7 

1981 5,963,225.3 57,379,376.7 0.5835 33,480,866.3 
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Table 6.1. Continued. 

Company Year Annual Total Fuel Present Present Worth of 
No. Energy Generation Costs Worth Total Fuel Costs 

(MWh) ($) Factor ($) 

1982 6,363,543.8 69,026,460.3 0.5403 37,294,936.5 

1983 6,674,182.6 97,170,171.1 0.5002 48,604,519.6 

1984 7,105,690.8 98,466,497.3 0.4632 45,609,681.6 

1985 7.679.690.8 179,357,073.8 0.4289 76,926,249.0 

Total 62,031,208.0 692,141,974.8 383,214,097.8 

6 1975 1,037,144.9 6,013,273.0 0.9259 5,567,683.5 

1976 1,041,364.7 6,499,356.7 0.8573 5,571,898.5 

1977 1,049,739.6 7,089,517.3 0.7938 5,627,658.8 

1978 616,062.1 8,981,029.9 0.7350 6,601,057.0 

1979 1,289,577.8 11,702,539.8 0.6806 7,964,746.6 

1980 1,293,236,2 12,606,901.0 0.6302 7,944,869.0 

1981 1,298,774.7 13,651,152.0 0.5835 7,965,447.2 

1982 1,411,456.2 16,951,145.0 0.5403 9,158,703.6 

1983 1,645,817.4 27,415,397.3 0.5002 13,713,181.7 

1984 1,854,309.2 39,505,074.9 0.4632 18,298,750.7 

1985 1,854.309.2 42,264,429.8 0.4289 18,127,213.9 

Total 14,391,792.0 153,175,137.3 106,541,216.5 

7 1975 3,810,000.0 19,229,380.0 0.9259 17,804,482.9 

1976 4,111,000.0 21:274,970,9 0.8573 18,239,032.6 

1977 4,446,000.0 24,072,030.7 0.7938 19,108,378.0 

1978 4,801,000.0 28,044,675.9 0.7350 20,612,836.8 

1979 5,185,000.0 32,012,400.1 0.6806 21,787,639.5 

1980 5,600,000.0 36,285,218.9 0.6302 22,866,945.0 

1981 6,048,000.0 42,247,440.1 0.5835 24,651,381.3 

1982 6,532,000.0 48,341,906.7 0.5403 26,119,132.2 

1983 7,054,000.0 56,225,060.0 0.5002 28,123,775.0 

1984 7,619,000.0 67,245,772.8 0.4632 31,148,242.0 
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Table 6.1. Continued. 

Company Year 
No. 

Annual 
Energy Generation 

(MWh) 

Total Fuel Present Present Worth of 
Costs Worth Total Fuel Costs 
($) Factor ($) 

1985 8,828,000.0 

Total 64,034,000.0 

8 1975 1,919,000.0 

1976 2,087,000.0 

1977 2,306,000.0 

1978 2,506,000.0 

1979 2,723,000.0 

1980 2,959,000.0 

1981 3,217,000.0 

1982 3,499,000.0 

1983 3,785,000.0 

1984 4,094,000.0 

1985 4,428,000.0 

Total 33,523,000.0 

9 1975 285,000.0 

1976 300,000.0 

1977 325,000.0 

1978 360,000.0 

1979 395,000=0 

1980 410,000.0 

1981 430,000.0 

1982 445,000.0 

1983 475,000.0 

1984 475,000.0 

1985 475.000.0 

Total 4,375,000.0 

87,267,057.0 0.4289 

462.744.313.1 

9,339,519.7 0.9259 

14,714,907.0 0.8573 

30.815.533.7 0.7938 

45.472.099.8 0.7350 

62.761.414.9 0.6806 

83,641,969.4 0.6302 

108,749,941.7 0.5835 

133,765,202.4 0.5403 

178,579,173.9 0.5002 

213,501,967.4 0.4632 

261.275.680.2 0.4289 

1,142,617,410.3 

2,456,700.0 0.9259 

2,760,000.0 0.8573 

3,175,250.0 0.7938 

3,888,000.0 0.7350 

4,542,500.0 0.6806 

5,043,000.0 0.6302 

5,684,600.0 0.5835 

6,292,300.0 0.5403 

7,153,500.0 0.5002 

7,699,750.0 0.4632 

8,193.750.0 0.4289 

56,889,350.0 

37,428,840.8 

267,890,840.8 

8.647.461.3 

12.615.089.8 

24.461.370.7 

33,421,993.4 

42.715.419.0 

52.711.169.1 

63,455,591.0 

72.273.338.9 

89.325.302.8 

98,894,111.3 

112.061.139.2 

610,581,986.5 

2,357,989.5 

2,366,148.0 

2,520,513.5 

2.857.680.0 

3.091.625.5 

3.178.098.6 

3.316.964.1 

3.399.729.7 

3,578,180.7 

3.566.524.2 

3.514.299.4 

33.747.753.2 
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Table 6.2. Forecasted present worth of annual optimum total fuel costs, 
in dollars, for the companies with optimum Iowa Pool operation 
for the years from 1975 to 1985 

Company Year 
No. 

Optimum Annual 
Energy Generation 

(MWh) 

Total Fuel 
Costs 
($) 

Present 
Worth 
Factor 

Present Worth of 
Total Fuel Costs 

($) 

1 1975 3,986,816.6 41,089,020.6 0.09259 38,044,324.2 

1976 4,684,006.8 49,570,240.6 0.8573 42,496,567.3 

1977 4,694,083.1 53,383,863.7 0.7938 42,376,111.0 

1978 5,016,601.3 59,283,747.0 0.7350 43,573,554.0 

1979 5,630,027.3 68,281,833.5 0.6806 46,472,615.9 

1980 5,643,158.4 75,585,160.2 0.6302 47,633,768.0 

1981 5,653,302.2 81,445,742.1 0.5835 47,523,590.5 

1982 5,848,348.1 99,755,307.6 0.5403 53,897,792.7 

1983 6,518,557.9 98,778,658.5 0.5002 49,409,085.0 

1984 6,796,212.-0 130,311,706.7 0.4632 60,360,382.5 

1985 9,230,328.0 316,828,181.9 0.4289 135,887,607.2 

Total 63,701,909.7 1,074,342,356.0 - 607,675,398.3 

2 1975 1;564;101,4 12,521,013.9 0.9259 11,593,206.8 

1976 1,169,756.0 10,797,673.5 0.8573 9,256,845.5 

1977 2,359,017.3 19,897,344.6 0.7938 15,794,512.1 

1978 2,389,631,0 23,139,312.8 0.7350 17,007,394.9 

1979 2,395,006.0 24,955,512.3 0.6806 16,984,721.7 

1980 2,398,922.9 26,945,533.2 0,6302 16,981,075.0 

1981 2,402,979.3 29,104,983.8 0.5835 16,982,758.0 

1962 2,418,453.7 31,846,037.3 0.5403 17,206,414.0 

1983 2,483,307.4 48,985,192.7 0.5002 24,502,393.4 

1984 2,746,851.8 52,471,384.9 0.4632 24,304,745.5 

1985 2,749,165.0 56,138,274.2 0.4289 24,077,705.8 

Total 25,077,191.8 336,802,263.1 - 194,691,772.7 

3 1975 4,079,800.8 31,502,253.9 0.9259 29,167,936.9 

1976 5,792,580.3 42,757,171.3 0.8573 36,655,723.0 
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Table 6.2. Continued. 

No. 

Total 

4 

Total 

5 

y Year Optimum Annual 
Energy Generation 

(MMh) 

Total Fuel 
Costs 
($) 

Present 
Worth 
Factor 

Present Worth of 
Total Fuel Costs 

($) 

1977 6,270,588.8 53,031,688.3 0.7938 42,096,554.2 

1978 6,077,120.5 55,147,016.6 0.7350 40,533,057.2 

1979 7,156,472.3 71,776,164.2 0.6806 48,850,857.4 

1980 7,541,337.5 79,915,323.1 0.6302 50,362,636.6 

1981 7,410,128.3 84,114,871.2 0.5835 49,081,027.4 

1982 7,612,856.8 97,145,853.7 0.5403 52,487,904.8 

1983 7,632,739.0 108,075,548.2 0.5002 54,059,389.2 

1984 8,560,859.6 174,564,928.0 0.4632 80,858,474.7 

1985 8,563,351.2 191,301,374.6 0.4289 82,049,159.6 

75,272,230.0 989,332,193.1 - 556,202,721.0 

1975 1,985,395.4 38,799,746.0 0.9259 35,924,684.8 

1976 1,816,125.5 40,646,351.7 0.8573 34,846,117.3 

1977 1,843,182.7 44,221,003.0 0.7938 35,102,632.2 

1978 3,672,982.7 51,148,802.5 0.7350 37,594,369.8 

1979 2,459,124.7 57,877,409.3 0.6806 39,391,364.8 

1980 3,986,377.7 77,472,487.0 0.6302 48,823,161.3 

1981 4,018,402.4 83,820,799.4 0.5835 48,909,436.5 

1982 4,038,593.5 90,338,322.1 0.5403 48,809,795.4 

1983 4,905,725.9 130,037,050.9 0.5002 65,044,532.9 

1984 4,938,626.8 156,654,733.0 0.4632 72,562,472.3 

1985 5.196,643.9 167,734,301.8 0.4289 71,941,242.0 

38,861,181.2 938,751,006.7 - 538,949,809.3 

1975 4,268,346.0 21,237,596.5 0.9259 19,663,890.6 

1976 4,256,201.4 22,265,568.5 0.8573 19,088,271.9 

1977 4,236,296.4 23,194,579.1 0.7938 18,411,856.9 

1978 4,252,257.0 23,730,223.3 0.7350 17,441,714.1 

1979 4,266,950.5 26,240,101.4 0.6806 17,859,013.0 

1980 4,284,712.8 27,994,115.5 0.6302 17,641,891.6 
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Table 6.2. Continued 

Company Year 
No. 

Optimum Annual 
Energy Generation 

(MWh) 

Total Fuel Present Present Worth of 
Costs Worth Total Fuel Costs 
($) Factor ($) 

1981 4,977,233.9 40,443,596.1 0.5835 23,598,838.3 

1982 6,471,837.0 71,660,593.7 0.5403 38,718,218.8 

1983 6,924,422.4 93,284,370.2 0.5002 46,660,842.0 

1984 6,918,123.1 98,466,497.3 0.4632 45,609,681.6 

1985 6,911.823.8 103.921.870.1 0.4289 44.572.090.1 

57,768,204.3 552,439,111.7 - 309,266,308.9 

1975 1,040,830.9 6,033,912.0 0.9259 5,586,799.1 

1976 1,044,191.5 6,516,289.2 0.8573 5,586,414.7 

1977 1,049,739.6 7,089,514.7 0.7938 5,627,656.8 

1978 388,494.4 5,906,590.2 0.7350 4,341,343.8 

1979 1,062,888=8 7.714,104.7 0.6806 5,250,219.7 

1980 1,047,139.6 9,770,971.8 0.6302 6,157,666.4 

1981 1,298,774.7 13,635,496.3 0.5835 7,956,312.1 

1982 1,411,456.2 16,951,145.0 0.5403 9,158,703.6 

1983 1,854,309.2 36,918,453.5 0.5002 18,466,610.4 

1984 1,854,309.2 39,505,074.9 0.4632 18,298,750.7 

1985 1.854.309.2 42.264.429.7 0.4289 18.127.213.9 

13,906,443.3 192,305,982.0 - 104,557,691.2 

1975 3,878,235.5 19,692,699.1 0.9259 18,233,470.1 

1976 4,211,134.6 21,812,693.7 0.8573 18,700,022.3 

1977 4,538,600.8 24,765,610.3 0.7938 19,658,941.9 

1978 5,064,779.7 30,117,991.9 0.7350 22,136,724.0 

1979 6,277,068.0 40,382,856.8 0.6806 27,484,572.3 

1980 6,437,928.1 44,213,754.8 0.6302 27,863,508.3 

1981 7,479,280.1 57,590,784.6 0.5835 33,604,222.8 

1982 7,751,723.6 62.714,092.3 0.5403 33,884,424.0 

1983 8,320,335.5 84,735,330.3 0.5002 42,384,612.2 

1984 9,241,096.4 134,911,307.4 0.4632 62,490,917.6 

Total 

6 

Total 
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Table 6.2. Continued. 

Company Year 
No. 

Optimum Annual 
Energy Generation 

(MWh) 

Total Fuel 
Costs 
($) 

Present Present Worth of 
Worth Total Fuel Costs 
Factor ($) 

1985 9,934,020.7 144,084,686.0 0.4289 61,797,921.8 

Total 73,134,203.0 665,021,807.7 - 368,239,337.3 

8 1975 1,854,909.7 8,421,481.7 0.9259 7,797,449.9 

1976 1,865,359.9 9,050,569.8 0.8573 7,759,053.5 

1977 1,840,965.3 11,019,501.8 0.7938 8,747,280.5 

1978 1,848,138.6 11,994,372.3 0.7350 8,815,863.6 

1979 1,854,980.5 12,776,886.6 0.6806 8,695,949.0 

1980 1,864,488.9 12,787,086.3 0.6302 8,058,421.8 

1981 1,871,806.0 14,606,780.5 0.5835 8,523,056.4 

1982 1,973,608.0 17,681,298.2 0.5403 9,553,205.4 

1983 2,162,040.0 19,357,008.4 0.5002 9,682,375.6 

1984 2,015,781.8 20,937,061.6 0.4632 9,698,046.9 

1985 2,015.781.8 22,107,211.7 0.4289 9,481,783.1 

Total 21,167,860.5 160,739,258.9 - 96,812,485.7 

9 1975 

1976 

1977 

1978 

1979 

-

-

-

-

1980 404,896.2 4,980,223.2 0.6302 3,138,536.7 

1981 504,576.0 6,670,494,7 0.5835 3,892,233.7 

1982 504,576.0 7,134,704.6 0.5403 3,854,880.9 

1983 504,576.0 7,598,914.5 0.5002 3,800,977.0 

1984 504,576.0 8,179,176.9 0.4632 3,788,594.7 

1985 504.576.0 8,703,936.0 0.4289 3,733,118.2 

Total 2,927,776.2 43,267,449.9 - 22,208,341.2 
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Table 6.3. Forecasted present worth of annual optimum total fuel costs, in dollars, for optimum 
independent operation of the companies, and for their cooperative optimum operation as 
the Iowa Pool for the years from 1975 to 1985 

Total Optimum 
Year Energy 

Generation 
(MWh) 

Companies Operating 
Independently 

Companies Operating 
as a Pool 

Total Fuel 
Costs 
($) 

Present Worth of 
Total Fuel Costs 

(•?) 

Total Fuel 
Costs 
($) 

Present Worth of 
Total Fuel Costs 

($) 

1975 22,527,000.0 198,240,011.8 183,633,760.7 179,297,723.7 166,011,762 .4 

1976 24,432,000.0 231,478,245.8 198,446,300.3 203,416,558.3 174,389,015 .5 

1977 26,591,000.0 263,204,440.4 208,931,684.8 236,603,106.0 187,815,545 .6 

1978 28,710,000.0 314,651,018.7 231,2(58,798.8 260,468,056.6 191,444,021 .3 

1979 30,798,000.0 378,565,510.8 257,651,684.7 310,004,868.8 210,953,313 .8 

1980 33,019,000.0 476,834,192.3 300,500,908.0 359,664,655.1 226,660,665 .7 

1981 35,459,000.0 554,626,355.4 323,624,828.5 411,433,548.7 240,080,475 .7 

1982 38,075,000.0 663,312,268.1 358,387,617.9 495,227,354.5 267,571,339 .6 

1983 40,816,000.0 810,321,604.1 405,322,866.4 627,770,527.2 314,010,817 .7 

1984 43,833,000.0 989,095,532.7 458,149,050.8 816,001,870.7 377,972,066 .5 

1985 46,963,000.0 1,276,391,447.0 547,4/14,292.1 1,053,084,266.0 451,667,841 .7 
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Figure 6.1. Forecasted present worth of annual optimum total fuel costs 
for optimum independent operation of the companies and for 
their cooperative optimum operation as the Iowa Pool for the 
years from 1975 to 1985, in millions of dollars per year 
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panies and, finally, to the consumer, if the companies act as a united 

group to meet their customers' electrical energy demand in an optimum 

fashion. Table 6.4 and Figure 6.2 show, in percent per year, the annual 

total fuel cost savings of optimum operation of the generating units of 

the companies as the Iowa Pool, compared to optimum independent operation 

of the generating units for each company. The computer outputs for the 

Iowa Pool application of the model are presented in Appendix H. 

In the Iowa Pool's optimum operation, each company generates electri

cal energy according to the efficiency of its generating units and the 

costs and qualities of the fuels used. While, in some years some of the 

companies generate less electrical energy than with their independent oper

ations, some others generate more energy than they normally would. Again, 

the energy generation totally depends on the efficiency of the units and 

on the cost and quality of the fuels used throughout the years, which are 

changeable- For example. Figure 6.3 shows the annual optimum electrical 

energy generation in (Mi by company 1 as a result of independent operation 

and Iowa Pool operation for the years from 1975 to 1985. As can be seen 

from this figure, company 1 produces much less energy with Pool operation 

than with independent operation for the years from 1979 to 1984. But, 

after the year 1984, it generates much more energy under Pool operation 

than under independent operation, because of planned new nuclear units. 

Figure 6.4 shows the present worth of annual optimum total fuel costs for 

company 1 with independent operation and with Iowa Pool operation for the 

years from 1975 to 1985 in millions of dollars. Nevertheless, under the 

Pool operation, since each company shares the total fuel costs of the Pool 
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Table 6.4. Forecasted annual total fuel cost savings of optimum operation 
of the companies as the Iowa Pool compared to optimum indepen
dent operation of the companies, in percent per year 

Total Fuel Cost 
Year Savings 

(%) 

1975 9.6 

1976 12.1 

1977 10.1 

1978 17.2 

1979 18.1 

1980 24.6 

1981 25.8 

1982 25.3 

1983 22.5 

1984 17.5 

1985 17.5 
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Figure 6.2. Forecasted annual total fuel cost savings of cooperative 
optimum operation of the companies as the Iowa Pool, 
compared to optimum independent operation of the companies 
in percent per year 
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Figure 6.3. Forecasted annual optimum electrical energy generation by 
company 1 as a result of independent operation and Iowa Pool 
operation for the years from 1975 to 1985, in GWh 
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Figure 6.4. Forecasted present worth of annual optimum total fuel costs 
for optimum usage of the units of company 1 with independent 
operation, and with Iowa Pool operation, from 1975 to 1985, 
in millions of dollars 
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according to its own energy demands, the fuel cost savings of each com

pany, in dollars per MWh, will be the same (See Table 6.4 and Figure 6.2). 

Some considerable savings can be achieved in energy and in the total 

cost of energy by conservation measures. The recent emphasis on voluntary 

measures of energy conservation in response to potential energy shortages 

created by the cut-off of oil supplies from the Middle East, yielded a 5 

percent reduction in energy demand by simple conservation measures (134). 

Table 6.5 and Figure 6.5 show the annual electrical energy requirements in 

MWh for company 1 with various conservation levels. 

As an example to illustrate the usefulness of the computerized model 

to investigate a wide variety of policies rapidly and economically, the 

following study has been made. In this study, the possible savings in 

energy costs have been Investigated with decreasing crude oil prices at 

various conservation levels, applying the model to company 1. In this 

study, three crude oil prices have been assumed, as previously studied in 

the Project Independence Report (21). These prices are four dollars per 

barrel, seven dollars per barrel, and the present price of eleven dollars 

per barrel. While the crude oil prices are changing, the other fuel 

prices have been assumed to remain the same. The results of this applica

tion are sunsaarized in Table 6.6. The table shows the total fuel costs of 

optimum electrical energy generation using the generating units of company 

1 for various fuel prices and for various conservation levels, in dollars, 

over an 11 year period from 1975 to 1985. These results are plotted in 

Figure 6.6. Table 6.7 shows total fuel cost savings, in percent, for op

timum electrical energy generation for company 1 for various fuel prices 
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Table 6.5. Annual electrical energy generation of company 1 for various 
conservation levels, in MHh 

Annual Electrical Energy Generations 
CMWh) 

Year 
0% 5% 10% 15% 20% 25% 

1975 4,111,000 3,905,450 3,699,900 3,494,350 3,288,800 3,083,250 

1976 4,423,000 4,201,850 3,980,700 3,759,550 3,538,400 3,317,250 

1977 4,769,000 4,530,550 4,292,100 4,053,650 3,815,200 3,576,750 

1978 5,152,000 4,893,450 4,635,900 4,378,350 4,120,800 3,863,250 

1979 5,534,000 5,257,300 4,980,600 4,703,900 4,427,200 4,150,500 

1980 5,945,000 5,647,750 5,350,500 5,053,250 4,756,000 4,458,750 

1981 6,396,000 6,076,200 5,756,400 5,436,600 5,116,800 4,797,000 

1982 6,877,000 6,533,150 6,189,300 5,845,300 5,501,600 5,157,750 

1983 7,353,000 6,985,350 6,617,700 6,250,050 5,882,400 5,512,750 

1984 7,893,000 7,493,330 7,103,700 0,709,050 6 >314>400 5,919,750 

1985 8,466,000 8,042,700 7,619,400 7,196,100 6,772,800 6,349,500 
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Figure 6.5. Annual electrical energy generation of company 1 for various 
conservation levels, in MWh 
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Table 6.6, Total fuel costs, in dollars, of optimum electrical energy 
generation for company 1 for various fuel prices and conser
vation levels, in percent, over an 11 year period from 1975 
to 1985 

Total Optimum Fuel Costs for Various 
Conserved Future Fuel Prices 

B's Energy 
(%) (at 11 $/Bbl oil) 

($) 
(at 7 $/Bbl oil) 

($) 
(at 4 $/Bbl oil) 

($) 

B 0.0 1,382,359,757.9 1,128,322,565.8 801,714,076.7 

B2 5.0 1,020,026,912.2 821,801,704.9 606,111,030.3 

B3 10.0 869,987,888.6 709,448,667.0 545,116,529.1 

B4 15.0 756,815,755-3 626,832,609.2 494,179,540.9 

B5 20.0 688,535,352.3 567,652,738.8 444,279,046.0 

B6 25.0 645,224,043.3 531,896,376.4 416,233,325.6 

Table 6.7. Total fuel cost savings, in percent, for optimum electrical 
energy generation for company 1, for various fuel prices and 
conservation levels, in percent, over an 11 year period from 
1975 to 1985 

Total Fuel Cost Savings for Various 
Conserved Future Fuel Prices 

B's Energy 
(%) (at 11 $/Bbl oil) 

(%) 
(at 7 $/Bbl oil) 

(%) 
(at 4 $/Bbl oil) 

(%) 

B 0.0 0.0 18.4 42.0 

B2 5.0 26.2 40.6 56,2 

B3 10.0 37.0 48.7 60.5 

B4 15.0 45.3 54.7 64.3 

B5 20.0 50.2 58.9 67.9 

B6 25.0 53.3 61.5 69.9 
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Figure 6.6. Total optimum fuel costs for various fuel prices and conserva
tion levels for company 1 over an 11 year period from 1975 to 
1985, in millions of dollars 
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and conservation levels in percent, compared to present fuel prices and a 

zero conservation level, over an 11 year period from 1975 to 1985. The 

results are plotted on Figure 6.7. 

Table 6.7 and Figure 6.7 show that, if a 5 percent conservation level 

is achieved, at the present crude oil prices, the total fuel cost savings 

of company 1 is 26.2 percent. If 25 percent conservation level is 

achieved, then the total fuel cost savings is 53.3 percent. If the crude 

oil prices decrease to seven dollars per barrel, at a 5 percent conserva

tion level, the total fuel cost savings is 40.6 percent; at a 25 percent 

conservation level the total fuel cost savings is 61.5 percent. The main 

reason for these savings is that the decreasing demand for electrical 

energy decreases the necessity of operation of the less efficient or more 

expensively fueled generating units. 

Because of the number of assumptions involved, the results of this 

application of the model may not be precisely accurate. Nevertheless, the 

usefulness of the model as a tool for making comparative studies for sen

sitivity analyses is well illustrated by these examples. 
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Figure 6.7. Total optimum fuel cost savings for various fuel prices and 
conservation levels for company 1, compared to present fuel 
prices and a zero conservation level over an 11 year period 
from 1975 to 1985, in percent 
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VII. SUMMARY AND CONCLUSIONS 

This study covers the entire energy field with special emphasis on 

electric power. The sources of energy and the projected energy supply 

and demand to the year 2000 on the basis of statistical data have been 

reviewed, and a survey of U. S. energy forecasts has been made in order to 

make a comparison between projections. Some energy related issues are 

discv-jsed in the light of these projections. 

In order to evaluate rapidly the consequences of different proposed 

energy policies, a computerized electrical energy model has been developed 

in this thesis. The necessary mechanism is built into the model to cap

ture accurately the dynamics of changes. Furthermore, if one wishes to 

answer the many "what i£" questions, the computerized electrical energy 

model has a consistent framework within which to investigate a wide variety 

of policies rapidly and economically. 

The model is basically built for the electric power industry to mini

mize the cost of energy used for electric generation through optimum 

allocation of various f.v&l mixes over a period of n years, where the energy 

is subject to a large nutober of physical and environmental constraints. 

The model has been applied to each of the nine utility companies in 

the State of Iowa individually and together as an Iowa Fool. 

The results show that the computerized model is a promising tool in 

long range power systems planning. It is also demonstrated that there can 

be a considerable savings to the companies and, finally, to the consumer, 

if the companies act as a united group to meet their customers' electrical 

energy demand in an optimum fashion. 
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The FAM model is quite efficient and economical. For example, the 

program requires 96K words of computer core storage, 1.18 minutes of 

computer CPU time, and 1063 iterations to reach an optimum solution for 

the Iowa Pool program which has 1287 real variables, 45 LP rows, and 

3713 LP elements, at a cost of only 15.14 dollars. 
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VIII. RECOMMENDED FUTURE WORK 

In order to make this model a more useful tool in long range power 

system planning, capitalization costs, operating and maintenance costs 

should be added to the fuel cost to determine the optimum generation plans 

with the lowest annual cost. The model can be improved easily to eval

uate long range generation patterns not only for the units which are 

already installed but for those to be Installed in the future. Of course, 

there may be a better way to formulate the optimization model than we have 

used, nevertheless, this study presents a valuable start in this direction. 

Some further work is needed to apply the model into a pool arrange

ment. For example, in order to distribute the economic benefits of shared 

generation  ̂ in a manner which all can accept as fair and equitable, an 

allocation method should be developed. Also, a fair penalty system should 

be established among the pool members to fairly penalize those who, for 

private or internal reasons, choose to not cooperate in optimum pool 

development. A method should also be developed to determine the alloca

tion of capacity benefits and costs resulting from the additional instal

lation of transmission facilities among the pool members. 

Finally, it should be recognized that pool planning studies of this 

kind require both a commitment to cooperate in this work and a willingness 

to share information. To this end it is recommended that the Iowa util

ities establish an "Iowa Energy Data System" which can be used to collect, 

store, and evaluate data which would be available to all utilities for the 

contribution of optimal growth plans. 
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XI. APPENDIX A; ANNUAL LOAD FACTOR 

The load factor is the ratio of the average load over a given period 

of time to the peak load occurring in that period (132). Therefore, the 

system annual load factor (LF), as viewed from the terminals of all 

generating units, is: 

__ (Average Load, kW) _ (Ann. Energy Output, kffli) 
" (Peak Load, kTJ) ~ (Peak Load, kW) (8760) 

In 1973, annual electrical energy output, peak load, and energy 

sales data for total electric utility industry in the United States, 

according to Edison Electric Institute, were (133): 

Peak Load: 343,900 m 

g 
Electric Energy Output : 1,868.8 x 10 MWh 

Energy Sales = 1,703.203 x 10  ̂ MWh 

Therefore, in 1973 the annual load factor for the USA was : 

_ 1.868.8 X 10̂  MWh , 
(343,900 MW) (8760) 

Figure A*1 shows that in 1968 the world average load factor was much 

lower than the United States' load factor, although several nations had 

better (higher) load factors (28). There is no direct correlation between 

GNP and load factor. 

The difference between annual energy output and energy sales is 

transmission and distribution system losses and miscellaneous use, which 

amounted to 8.86 percent of the average system load in 1973. Thus, on an 

energy basis the aggregate U. S. electric power transmission system was 
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about 91 percent efficient. 

The peak load loss (portion of the peak demand consumed in the 

transmission system) is not readily measured, but can be calculated 

from the energy loss factor and the system annual load factor with the 

following equations (132): 

LS = (0.25)(LF) + (0.75)(LF)̂  

where LS is loss factor in per unit, and LF is load factor in per unit. 

Therefore, 

LS = (0.25)(0.62) + (0.75)(0.62)̂  = 0.443 

_ , _ (Electric Energy Output, MWh) - (Energy Sales, MWh) 
- (LOSB Factor) (8760) 

= «  

Hence; the peak load Iobs for the total electric utility industry In 

the United States was 12.4 percent in 1973. The load factor calculations 

above are based on viewing the system and load from the generator busses. 

However, the load factor as viewed from the customer terminals is: 

(Energy Sales, MWh) 
 ̂ ^Cuotciucr (Psak Customer Lead, mj) (8760) 

bus 
(Energy Sales. MWh) 

(Peak Load, MW)(1 - Peak Loss in p.u.)(8760) 

. (1.703.203 % 10  ̂MM,)  ̂„ 5,, 
(343,900 MW)(1 - 0.124) (3760) 

The ratio of load factor to load factor of customer bus is: 
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<'̂ >cu»Ler bus ° 

Therefore, it Is found that, using 1973 data for the United States, 

'"'customer bus = 
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XII. APPENDIX B: THE EXPONENTIAL GROWTH 

Fitting trends after transformation of data is a common practice in 

technical forecasting. An arithmetic straight line that will not fit the 

original data may fit, for example, the logarithms of the data as typi

fied by the exponential trend, 

y  ̂ = ab* (B.l) 

This expression is sometimes called a growth equation, since it is 

often used to explain the phenomenon of growth through time. For example, 

the compound-Interest formula is: 

P  ̂ = P (̂l + if (B.2) 

where P  ̂ is the initial capital, 1 is the rate of interest, and P  ̂ is the 

capital value after n years. Now, if we set P  ̂ = y ,̂ P  ̂ = a, 1 + 1 = b, 

and n = x, then the equation Is identical to the exponential trend 

equation (B.l). 

A quantity exhibits exponential growth when it increases by a con

stant percentage of the whole in a constant time period (8). The process 

proceeds in exponential fashion until something limits the growth process. 

Shortage of food or resources, natural enemies, and perhaps other checks 

to growth cannot be ignored. In a realistic environment, no process can 

or will grow exponentially forever, although it may experience exponential 

growth for a limited period. Many processes have been properly charac

terized in terms of an exponential growth curve by forecasters considering 

bounded study periods. The assumption is that natural limitations to 
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the growth process will not be strong or dominant during the study period. 

Â realistic model of growth would be that of fruit flies in a jar. 

Assume a fixed amount of air and food are injected daily. The fruit 

flies would multiply in number, and their growth would be exponential at 

first, until the air and food became limited resources. Then competition 

for the resources would leave some flies without the means for survival, 

and the population would level off, rather than fill the jar completely. 

Growth would cease rather abruptly, since the restraining forces cannot 

be avoided or altered. 

Most growth processes are much more complicated than those discussed 

above. In particular, the restraining forces are usually numerous and 

interrelated, and are present even in the earliest stages of growth. As 

a result, growth processes are usually multistage, beginning often in 

exponential fashion, followed by growth at a diminishing rate, followed 

by ultimate stopping of growth. Let us consider an example of the growth 

of some generalized quantity, which is normalized to a value of 1.0 at 

time zero. Consider exponential growth at 2.0 percent per year, com

pounded annually, for an unbounded time period. Next, consider a modified 

exponential growth pattern for the same quantity, governed by the growth 

rates indicated in Table B.l. 

Table B.l. Modified exponential growth rates 

Time Period 
(Years) 

Compound Growth Rate 
(Percent) 

0-30 

30-60 

10 

8 
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Table B.l. Continued. 

Time Period Compound Growth Rate 
(Years) (Percent) 

60-70 6 

70-80 4 

80-90 3 

90-100 2 

100-110 1 

110-160 0.5 

160-200 0.3 

200-300 0.1 

300-400 0.05 

Both growth curves are plotted In Figure B.l. Note that the 

modified exponential growth curve rises more rapidly at first, then 

"saturates", and continues to grow modestly. It passes through a phase 

of rapid exponential gro^h, arid than later grows at s steadily diminishing 

rate until absolute growth becomes very moderate. This is typical of the 

growth of natural processes, and the modified exponential growth curve 

in Figure B.l resembles the Gompertz and Pearl-Reed growth curves used 

by economists (66). On the other hand, the true exponential growth curve 

seems to grew modestly at first, but eventually reaches staggering 

proportions. Not only does the total amount grow exponentially, but the 

slope of the curve also grows exponentially. It is noteworthy that all 

true exponential growth curves have the same shape. Only the time scale 

changes as the compound growth rate Is modified. Alternatively, exponen

tial growth can be plotted in doubling periods Instead of years. The 
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length of the doubling period is directly related to the compound growth 

rate, and in the present case (2% growth), it is 35 years. Other 

doubling periods are noted in Table B.2 for comparison. 

Table B.2. Doubling periods for various annual growth rates 

Annual Growth Rate Doubling Period 
(%) (Years) 

1 69.4 

2 35 

5 14.2 

7.2 10 

10 7.3 

Nc natural or osn^msde process can experience exponential growth 

indefinitely. Eventually some limitation, or several limitations, will 

present opposing forces which diminish the intensity of growth or even 

reverse it. Natural enemies, competition, resource and food limitations, 

and space limitations are examples of possible forces opposing exponential 

growth. Processes involving human decisions are not exceptions to this 

rule. Although human ingenuity can sometimes extend the period of expo

nential growth by weakening or removing the opposing forces, that same 

ingenuity can substitute alternative processes which may also limit the 

growth of the original process. 
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XIII. APPENDIX C: THE IMPACT OF ELECTRIC CARS ON LOAD FACTOR 

In the United States in 1973, the load factor for all power systems 

combined was approximately 62 percent. This figure takes into account a 

simultaneous peak demand of 343,900 MW and energy production of 

1,866.8 X 10  ̂ MWh (See Appendix A). The load factor is a measure of 

equipment utilization. Therefore, since electric power systems are 

capital intensive, electric power industry strive for high load factors. 

For this reason, off-peak energy utilization is advantageous. Since such 

utilization requires no additional capital investment in system facili

ties, it benefits both electric power companies and their eustoners. Load 

growth, on the other hand, is undesirable. It causes an increase in 

peak load, which necessitates new Investment in production, transmission, 

and distribution facilities. 

At present, the battery powered electric vehicles that are in 

service are far outnumbered by gasoline powered vehicles. Today the 

impact of these electric vehicles on electric power demand is relatively 

insignificant. This situation will probably not change until better 

high energy density batteries become feasible to use on a large scale 

(48). If, at some future time, electric cars do become popular, electric 

power systems will supply the energy they need. Since most cars would 

be in use during peak periods, their batteries could easily be energized 

during off-peak periods, in which case no new power plants or transmission 

facilities would need to be built. Although the future popularity of 

electric cars cannot be predicted precisely, their possible impact on 

the system load factor can be estimated by making certain assumptions. 
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To present an extreme example, It will be assumed that electric cars 

become extremely popular in the early 1980*8. There are presently 90 

million cars on the road. It is expected that 180 million cars will be 

by the year 2000 (48). Assuming range and performance similar to those 

of contemporary automobiles, a 1,430 kilogram electric car with an energy 

consumption rate of 0.40 kWh per kilometer. Including energy needed to 

overcome vehicle inertia and road friction, to charge and discharge the 

battery, energy lost in the transmission line, and that needed for heating 

12 
and air conditioning (48). Approximately 1.16 x 10 kWh of energy would 

be consumed yearly by 180 million such cars, assuming an average driving 

distance of 16,100 kilometers (10,000 miles). 

It is quite possible that electric cars alone will supply the 

"second car" market by the year 2000. At that time, there very possibly 

may be 90 million cars (half of total cars sold) on the second car 

market, assuming there will be more than two cars per family of four and 

a U. S, population of 279 million. If those 90 million cars were electric 

12 
cars, they would use 0.58 x 10 kWh of electrical energy per year, which 

would significantly Increase the load factor for combined power systems. 
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XIV. APPENDIX D; A COMPUTER PROGRAM TO CALCULATE THE 
AREA UNDER A GIVEN CONSUMPTION CURVE 
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c 
C A FPCGRAP TC CALCULATE THE AREA UNDER A GIVEN 
C CONSUMPTION CURVE 
C 

c 
c 
/ /C269TG JCE 14375.GONEN 
//STEPi EXEC WATFIV 
//GC.SYSIN DO * 
$JOB 'GONEN',TIME = S,PAGES=10 

DIMENSION YC30 ) 
C N IS THE NUMBER OF GIVEN CCNSUMPTION VALUES MINUS ONE. 
C DELTAX IS THE NUMBER OF THE YEARS BETWEEN INTERVALS. 

READ.N 
READ.DELTAA 
KN=N+1 
READ*( Y( I )  «1 =1 .NN) 
PRINT,NN,DELTAX,(Y(I ) , I  = 1,NN) 
SUM=Y(1 >+Y(NN) 
NM=N-2 
DC 1 1=2,NM,2 
SLM=SUM+4.*Y(I)+2.*Y(I+l) 
IF((I+1).EQ.(N-1)) GO TO 20 

1 CCNTINUE 
20 SUM=SUM+4.*Y(N) 

2 AREA=DELTAX*SUM/3. 
PRINT,AREA 
STOP 
END 

SENTRY 
DATA 

N 
DELTAX. 

Y. 
/* 
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APPENDIX E: A COMPUTER PROGRAM FOR DEMAND FORECASTING SUBMODEL 
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C 
c 
c DEMAND FORECASTING SUBMODEL. 
C 
C 
C 
C 
/ /C269TG JOB 14375,GONEN 

DIMENSION RLXO(50),RLXC(50 ),Y( 50) 
C RLXD=READ PAST DEMAND VALUES IN MW. 
C RLXC=PREDICTED FUTURE DEMAND VALUES IN MW. 
C NFsNUMËER OF YEARS IN THE PAST UP TO THE PRESENT 
C NF=NUMBER OF YEARS FROM THE PRESENT TO THE FUTURE THAT 
C WILL BE PREDICTED. 

READ,NP,NF 
READ, (RLXD( I  ), I=l,NP) 
SXIYI=0. 
SXI SQ=C. 
SXI=0. 
SYI=0. 
SYISQ=0. 
CC 1 1=1 ,NP 
XI=I-1 
Y ( I )  =  A L O G ( R L X D ( n )  
SXIYI=SXIYI+XI*Y(I) 
S%I=SXI + XI 
SYI=SYI+Y(I) 
SXISQ=SXIS0+XI**2 
SYISQ=SYISO+Y(I)**2 

1 CONTINUE 
A = (SXlYI-< SXI&SYI)/NP)/< SXlSQ-($XI**2)/NP) 
B=SYI/NP-A*SXI/NP 

C A=ALOG{R) ;R=1+RATE OF GROWTH 
R=EXP?AÎ 

C B=ALCG(PLXC(l )  )  
RLXC(1)=EXP(B> 

C RG=RATE OF GROWTH 
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PG—R""l • 
PRINT. «RATE OF GROWTH=*,RG 
NS=NP+NF 
DO 2 1=2,NN 
XI=I-1 
DV=A*XI+B 
RLXC( I ) = EXP(DY) 

2 CCNTINUE 
PRINT,'RLXD RLXC' 
CO 4 1=1,NP 
PR INT«RLXD(I),RLXC(I) 

4 CONTINUE 
DO 3 1=1,NF 
IP=I+NP 
PRINT,* *,RLXC(IP) 

3 CONTINUE 
STOP 
END 

SENTRY 
DATA 

NP 
NF 

RLXD. 
/* 
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XVI. APPENDIX F: COMPUTER OUTPUTS OF THE FAM MODEL 
FOR THE IOWA POOL APPLICATION 

The following pages show a summary of the input data and the optimum 

solution of the FAM model for the Iowa Pool application. (See Appendix H 

for the interpretation of the output.) 
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exCCUTOn» M»SX RELE &Se 1 MOD LEVEL 5 

SECTION 2 * COLUMNS 

BEA *COLUMK* AT ***ACT|V1TY**» **INPUT COST** II*LO«£R LIMIT# 

46 F 179 LL 366 938*40000 7*69000 366936*40000 

47 F279 LL 192 921*00000 6*91000 192521*00000 
46 F379 LL 45 SI 3. 30000 44*11000 45813*30000 
49 F579 LL 313697. 40000 7*64000 313697*40000 
SO F675 LL 241972*#0000 6*91000 241972*40000 
91 F87S EQ 440992.10000 37*60000 440952*10000 
92 F975 LL 72126*00000 37*60000 72126*00000 
93 F1079 LL 82991*40000 50*40000 82591*40000 
54 F1179 LL * 50*40000 * 

55 F127S LL * 50*40000 * 

96 F1379 LL * 90*40000 * 

97 F1479 LL * 90*40000 • 
96 F1S79 LL * 90*40000 * 

99 F167S LL * 90* 40000 * 

60 F1775 LL * 90*40000 * 

61 P1975 UL 2204 7*0*60000 1*93000 * 

62 P2275 LL 654*4*20000 40*00000 65444*20000 
63 F 176 LL 370 01)0*00000 8*23000 370090*00000 
64 F276 LL 1929^1*00000 9* 10000 192521*00000 
69 F376 LL 46100#00000 47*20000 46100*00000 
66 F976 LL 314697*40000 8*39000 313697*40000 
67 P676 LL 24191'2* 40000 9*10000 241972*40000 
68 F776 UL 66142!8. 20000 6*30000 236193*80000 
69 F876 eo 4409!i2. 10000 40* 44000 440952*10000 
70 F976 LL 8681.0. 00000 40*44000 66810*00000 
71 F1076 EO 9441)9. 70000 53*93000 94489*70000 
72 F1I76 LL 1868.60000 93*93000 8660*60000 
73 F1276 LL . 93* 93000 * 

74 F1376 LL 53*93000 * 

79 F 1476 LL ' • 93*93000 * 

76 F1976 LL 53*93000 * 

77 F 1676 LL * 53*93000 * 

78 F1776 LL . 53^93000 * 

79 P1976 UL 2204 700*60000 2*02000 * ' 

80 P2276 LL 6^>3n6«-60000 42*80000 69316*60000 

81 52376 eo j969<kl4,20000 % 50000* 396968*20000 

82 F177 LL 3712J8&00000 6*81000 371230*00000 
83 F277 LL 194i9Jl« 00000 9*74000 192521*00000 
84 F377 LL 4li8(l9o90000 50*50000 46699*90000 
69 F577 LL 31 :i6<»7<i 40000 8*98000 313697*40000 
86 F677 LL 24k972u40000 9*74000 241972*40000 
87 F777 LL 66114;Z8o20000 6*74000 241225*00000 
88 F877 EO 44()9!52» 10000 43* 27000 440952*10000 
89 F977 LL 9Il6(>8o00000 43*27000 91666*00000 
90 F1077 eo 944B9x, 70000 57* 70000 94469*70000 
91 FI 177 LL 3819,170000 57*70000 3819.70000 
92 F 1277 LL 57*70000 . 
93 F1377 LL 57. 70000 . 
94 F1477 LL 57*70000 . 

• •UPPER LIMIT» eREDUCED COST# 

S6693S*40000 
3779S9«00000 
3:4966.80000 
90394S»30000 
291972*60000 
4409S2«10000 
440992»t0000 
94469.70000 
94469*70000 

94489.70000 
94469.70000 
94469.70000 
94469.70000 
94469.70000 
94469.70000 

2204760.60000 
3149696.00000 

966936*40000 
377959.00000 
314966.60000 

903949.30000 
291972.60000 
661426.20000 

440992.10000 
440952.10000 
94469.70000 
94469.70000 
94469.70000 
94469.70000 
94469.70000 
94469.70000 
94469.70000 

94469.70000 
2204 760.60000 
3149698.00000 
396961.20000 
966936.40000 
377999.00000 
314966.60000 
903949.30000 
291972*60000 
661426*20000 
440992*10000 
440992*10000 
94469*70000 
94469*70000 

94489*70000 

94489*70000 
94469*70000 

*02000 

*64000 
36.44 000 

*17000 
*64000 

30*13000 
30*13000 
42* 73000 
42*73000 
42*73000 
42*73000 
42*73000 

42*73000 
42*73000 
42.73000 

9*74000* 
32*33000 

1*93000 
2*60000 

40*90000 
2*09000 
2*60000 

34*14000 
34*14000 
47*63000 
47*63000 
47*63000 
47*63000 
47*63000 
47*63000 
47.63000 
47.63000 
4*28000-

36*50000 
*80000 

1.32000 
2.25000 

43.01000 
1*49000 
2*29000 
*75000-

39*76000 
39. 78000 
50*21000 
50*21000 
50*21000 
50*21000 
50.21000 
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EXECUTOP* WPSX RELEASE X  MOD LEVEL 5 

MBER *COLUMN* A T  *o * ACT XV IW* ** *o INPUT COST** **L0«3R LIMIT* 

248 F2175 LL H 641* 00000 26*53000 14641*00000 
249 F2275 LL 1789 0*7000 0 26*53000 17890*70000 

250 F2379 LL If,616* 30000 26*53000 16616*30000 
251 F2475 VL 13103958* 40000 6*04000 385553*20000 

252 F2575 LL 2!i6C)l*OD0'OO 25*20000 25681*00000 
2S3 F267S LL 1064>9» 20000 25*20000 14649*20000 
264 F2773 LL ia3V2*80000 29*20000 13372*80000 

255 P2975 UL l2iS9»6* 30000 5*50000 * 

256 P21075 VL 0209*30000 5*50000 * 

257 P21 175 LL 2;>0(I6*40000 50*40000 25006*40000 
258 S21275 EO 3)496*6000Û 6*20000- 31496*60000 
259 F2176 LL 15423*00000 28*39000 15423*00000 
260 F2276 LL 1*452*30000 28*39000 16452*30000 
261 F2376 LL 17203* 10000 28* 39000 17263*10000 
262 F2478 LL 393236*50000 6*47000 393236*50000 
263 F2576 LL 27331*lOOOO 26*96000 27331*10000 
264 F2676 LL 14609*2000 0 26*96000 * 14649*20000 
265 F 2776 LL 9609* 90000 26*96000 9689*90000 
266 F2876 a s  51<&808*40013 6*30000 * 

267 P2976 UL 1125906* 30000 5*88000 * 

268 P21076 UL (5299*30000 5*08000 * 

269 P21176 LL 20536*80000 53*93000 26536*80000 
270 S21376 EQ 50394*50000 6*60000" 50394*50000 
271 F2177 LL li>702*20000 30*37000 16742*20000 
272 F2277 LL 1&802*00000 30*37000 16062*00000 
273 F2377 LL 13201*10000 30*37000 18281*10000 
274 F2477 UL 13039t>8*40000 6*92000 586732*30000 
275 F2577 LL 27936*20000 28*05000 27936*20000 
276 F2677 LL l>^9a5* 2000 0 28*85000 14925*20000 
277 F2777 LL 9879* 00000 20*85000 9879*00000 
278 F2877 UL 9171(10*40000 6* 74000 * 

279 P21077 UL 02<i9* 30000 6*29000 * 

280 P21177 LL 26953* 50000 57* 70000 26953*50000 
281 S21477 EO 62903*20000 6*90000- 62993*20000 
282 F2178 LL 1 5»»3* 00000 32*50000 15943*00000 
283 F2278 LL 169.25*50000 32*30000 16925*50000 
284 F2378 LL 19305*60000 32*50000 19385*60000 
285 F2478 UL 1303958*40000 7*41000 591113*70000 
286 F2S78 LL 285<10* 00000 30*74000 28520*00000 
287 F2678 LL 15026* 30000 30* 74000 15026*30000 
288 F277a L L  10136*40000 30*74000 10136*40000 
289 F 20 78 U L  '»! 7iaO* 4030U 7*21000 * 

290 P21078 U L  6299*30000 6* 73000 * 

291 P21178 L L  56256* 10000 61*74000 56256.10000 
292 F2179 LL 17462* 50 00 0 34* 77000 17462*50000 
293 F2279 L L  16925*50000 34*77000 16925*50000 
294 F2379 L L  21301* 90000 34*77000 21301*90000 
295 F2479 UL 1303958*40000 7* 92000 597222«aOOOO 
296 F2579 L L  28563*00000 32*09000 28563*00000 
297 F2679 L L  15026* 30000 32*09000 15026*30000 
298 F2779 LL 11425*00000 32*09000 11425*00000 

• •UPPER LIMIT* • PEDUCED COST* 

126616«30000 
126616*30000 
l3t6S5«70000 

1303996*40000 
37795*90000 
*5746*30000 
16746*30000 

125986*30000 
6299*30000 

944897*40000 
31496*60000 

126616*30000 
126616*30000 
131655*70000 

1303956*40000 
37795*90000 
15746*30000 
15746*30000 

917180*40000 
125986*30000 

6299*30000 
944897*40000 
50394*50000 

126616*30000 
126616*30000 
131655*70000 

1303958*40000 
37795*90000 
15748*30000 
15748*30000 

917180*40000 
6299*30000 

944897*40000 
62993*20000 

126616*30000 
1266I6#30000 
131655*70000 

1303 958*40000 
37795*90000 
15748*30000 
15748*30000 

.917180*40000 
6299*30000 

944897*40000 
126616*30000 
126616*30000 
131655*70000 

1303 958*40000 
37795*90000 
15748*30000 
15748*30000 

18*86000 
18*86000 
18* 86000 

1*63000* 
17*53000 
17*53000 
17*53000 
2*17000-
2*17000* 

42*73000 
1*47000 

22*09000 
22*09000 
22*09000 

* I 7000 
20*66000 

20*66000 
20*66000 

*42000-
*42000-

47*63000 
*30000» 

22*88000 
22*88000 
22*88000 

*5700fM 
21*3600V 
21*36000 
21*36000 

*75000-
*1*20000* 

50*21000 
*59000 

23*72000 
23*72000 
23*72000 
1*37000-

21*96000 
21*96000 
21*96000 
1*57000-
2*05000-

52*96000 
25*77000 
25*77000 
25*77000 
1*08000-

23*89000 
23*89000 
23969000 
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EXECLYOP# MPSX RELEASE 1 MOD LEVEL S 

MSER *COLUMN* AT ***ACT1VITT* ** • •INPUT COST* » » » LOWE A LIMIT» 

401 F 32376 LL 9865*00000 27*58000 98»5* OOOOO 

402 F32476 LL 22<'4&*30000 25^ 08000 2264 5*30000 
403 F3577 LL 21496*60000 18«72000 21496*60000 
404 F3677 LL 214 98,60000 18^72000 21496*60000 
405 F3777 LL 32SI93* 10000 19« 20000 32993*10000 
4  06 F3877 LL 329*93* 10000 19^52000 32993*10000 
407 F3977 LL 714)91* lOOOO 17*08000 71891*10000 
4 08 F31077 LL 14IMk5* 00000 41*40000 14865*00000 
409 F31 17'/ LL 16023* 80000 41*40000 16023*80000 
410 F31477 LL 98664*50000 33# 12000 98564*50000 
411 F31577 LL 259061*0000 0 13*46000 259061*00000 
4  12 F31677 UL 925099*50000 7* 13000 396853*00000 
413 F31777 UL 2078?74#30000 6*92000 327164*20000 
414 F3ie77 UL 2614216» 10000 6*78000 * 

415 F32077 LL 17253*6000 0 44*14000 17253*60000 
4  16 F32177 LL 21 (163* 50400 44*14000 21863*50000 
4 17 F32277 LL 18645*OOOûO 30* 34000 18645* OOOOO 
418 F32377 LL 4 589*0000 0 30*34000 4589»00000 
4  19 F32477 LL 19063# OOOOO 27*58000 19863»00000 
420 F3578 LL 27069*30000 20*68000 27869* 30000 
421 F3678 LL 26381»* 60000 20*68000 26385»6000 0 
422 F3778 LL 3(346^1*80000 21*12000 33463»d000a 
423 F3878 LL 29635*30000 21 *44000 29635»30000 
424 F3978 LL 53<l6î>* 00 00 0 18*70000 53465»OOOOO 
42b F31078 LL 149bt)* OOOOO 45*45000 14985*00000 
426 F31173 LL 16 76b» OOOOO 45#45000 16765*00000 
42.7 F3147d LL 6564 5*00000 36*43000 65645*00000 
428 F31t>78 LL 1 0^861* OOOOO 14*81000 105061*00000 
429 F3167@ UL 9;!5990* SO 000 7*85000 325999*50000 
430 F31778 UL 20T8774)* 30000 7*61000 685854*00000 
431 F3167B UL 26114216* 10000 7*46000 * 

432 F32073 LL 16.253* OOOOO 48*55000 16253*00000 
433 F32178 LL ilZ B63»90000 48*55000 22863*90000 
434 F32278 LL «8390*30000 33*38000 1889 0*30000 
435 F3237B LL 634<)* 70000 33*3*3000 6849*70000 
436 F32476 LL ;i9 993* 7000 0 30*34000 19998*70000 
437 F3579 LL <>8360*00000 22*72000 28369*00000 
438 F3679 LL 27401*60000 22*72000 27401*60000 
439 F3779 LL .14366*90000 23*20000 34586*90000 
440 F3879 LL 31 531* 10000 23*68000 31531*10000 
441 F3979 LL <35463* 70000 20»72000 55463*70000 
442 F31479 LL 68345*70000 40*07000 68345*70000 
443 F31579 LL 1 21 033* OOOOO 16*29000 121033*00000 
444 F31679 UL 9.'Z599<9* 5000 0 6#63OU0 331251*80000 
445 F31779 UL 2078774*30000 8*63000 331251*80000 
446 F31879 UL 2614216* 10 00 0 8*20000 685596*00000 
447 F31979 UL 14,23 645*40000 8*20000 685596*00000 
448 F32079 LL 9457* OOOOO 53*41000 945 7*00000 
449 F32179 LL 6325*00000 53*41000 6325*00000 
450 F32279 LL 36456* OOOOO 36* 71000 36456*00000 
451 F32379 LL 13863*00000 36*71000 13863*00000 

••UPPER LIMIT» •REDUCED COST* 

409455.SOOOO 
163762*20000 

31496*60000 
31496*60000 
62993*10000 
62993*10000 
61891#10000 

62993*10000 
56693*80000 

I SI 183*60000 
359061*00000 
925999*50000 

2078774*30000 
2614216*10000 
107086*40000 
107088*40000 
377959*00000 
409455*50000 
163782*20000 

31496*60000 
31496*60000 
62 993* 10000 
62993»10000 
81891•10000 

62993»10000 

56693*80000 
151183*60000 
359061*00000 
925999*50000 

2078774*30000 
2614216*10000 

107088*40000 
107088*40000 
377959*00000 
409455*50000 
163782*20000 

3I496»60000 
31496*60000 
62993*10000 
62993*10000 
81691*10000 

151183*60000 
359061*00000 
925999*50000 

2078774*30000 

2614216*10000 
1423645*40000 
107088*40000 
107088*40000 
377959*00000 
409455*50000 

21*28000 

18*78000 
11*23000 
1 1*23000 
11*71000 
12.03000 
9*59000 

33*91000 
33*91000 
25*63000 
5*97 000 
*36^0-
*57000-
* 71000-

36*65000 
36*65000 
22*85000 
22*85000 
20*09000 
11*90000 
11*90000 
12*34000 
12»66000 

9*98000 
36*67000 
36*57000 
27*69000 
6»03000 

*93000— 
1*17000-
1*32000-

39*77000 
39*77000 
24*60000 

24*60000 

21*56000 
13* 72000 
13*72000 
23*20000 
14*68000 
11*72000 
31*07000 

7*29000 
*37000-
*37000-
*80000-
* 80000-

44*41000 
44*41000 
27*71000 
27*71000 
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EMECUTOA. MPSX RKLKASE I MOO LCVCL 5 

M8ER * COLUMN* AT *** ACTIVITY* #* *• INPUT COST** **L0#5A LIMIV* 

492 F32479 LL 41005a 3000 0 33.38000 41005*30000 
453 F3580 LL 21)690# 5000 0 24*96000 26690* 90000 
454 F3660 LL 27401*60000 24*96000 27401*60000 
455 F3760 LL 35637* 8000 0 25*44000 35637*80000 
456 F3660 LL 33891#60000 26*08000 33691*60000 
457 F3960 LL 57692# 00000 22*82000 57692*00000 
456 F31480 LL 71565*00000 44*08000 71569*00000 
459 F31560 LL 131467»10000 17*92000 131487*10001) 
460 F31690 UL 925999*5000 0 9* 50000 501000*60000 
461 F 31 780 UL 2076774*3000 0 9*21000 550000*60000 
462 F31660 UL 2614216, 10000 9* 02000 563008*00000 
463 F31980 UL 142 3<A5* 40000 9*02000 563008*00000 
464 F320a0 LL 17Ct25*60000 56*75000 17625*60000 
4eyb F32180 LL 25693*00000 56*75000 25893*00000 
466 F32260 LL 36€65» 30000 40*39000 36665*30000 
467 F32360 LL 9536* 7000 0 40*39000 9536*70000 
468 F32480 LL 41996*00000 36*71000 41996*00000 
469 F3146B LL 75C)6Q» 5000 0 48*49000 7586 9*50000 
470 F31581 LL 1616131*60000 19*71000 161631*60000 
471 F3168B UL 925^)99* 50000 10*45000 521005*00000 
472 FJ17811 UL 2076774*30000 10* 13000 563865*90000 
473 F31881 UL 2614216*10000 9*93000 675396*10000 
474 F31981 UL 142364 S*«0000 9*93000 675396*10000 
475 F32081 LL 16C>49*00000 64*63000 16849*00000 
476 F32iaa LL 2375C* 60000 64* 03000 23750*80000 
477 F32281 LL 36^)63*60000 44* 43000 36963*60000 
476 F3238a LL 9063*50000 44*43000 9663*50000 
479 F3248a LL 42:165# 00000 40*39000 42365*00000 
480 F31462 LL 77^)53*10000 53*34000 77353.10000 
461 F31S62 UL 359061*00000 21*69000 165132*00000 
482 F31682 UL 92 5^)9$'* 50 00 0 11*49000 597465*30000 
483 F31782 UL 207 8774* 30000 11*15000 599801*00000 
484 F3166«e UL 2614A16* lOOOO 10* 92000 623696*40000 
465 F31962 UL 1423(»45*40000 10*92000 623696*00000 
466 F32082 LL 17045* 00000 71*09u00 17845*00000 
487 F32182 LL 25036*50000 71*09000 25836*SOOQO 
466 F32262 LL 37085*00000 46*87000 37065*00000 
469 F32382 LL 10:165*30000 48*67000 10365*30000 
490 F32462 LL 42675*60000 44*43000 42675*60000 
491 F31483 LL (1106(**60000 56*67000 81666*60000 
492 F31583 UL 359061«00000 23*86000 179376*00000 
493 F31683 UL 925 )99* 5000 0 12*64000 629681*50000 
494 F31783 UL 2078774)* 30000 12*26000 62864 5*00000 
495 F31863 LL 261421(1. lOOOO 12*01000 681536*70000 
496 F31983 UL 142!364 5*40000 12*01000 681223*00000 
497 F32083 LL 19985*60000 76*20000 19965*80000 
496 F32163 LL 4*9536* 20000 76*20000 29536*20000 
499 F322AJ LL 217^265* 00000 53#76000 37265*00000 
500 F32363 LL 19 &6:k 80000 53*76000 19863*80000 
501 F32483 LL 0272»*30000 46*87000 42725*30000 
502 F31484 UL 151 16:1*60000 64*54000 8534 7*60000 

• •UPPER LEW: T# • R60UCE0 COST# 

I637e2#20000 
31«96#60000 
31496#60000 
62993#10000 
6299J#IOOOO 
61091#10000 

ISt163#60000 
359061*00000 
925999*50000 

2076774*30000 
2614216*10000 
142364S#40000 
107086*40000 
107086*40000 
377959*00000 
409455*50000 
163 762*20000 
151183*60000 
359061*00000 
925999*50000 

2076774*30000 
2614216*10000 
1423645*40000 

107066*40000 
107086*40000 

377959*00000 

409455*50000 
163762*20000 
isiia3«60000 
359061*00000 
925999*50000 

2078774*30000 
2614216*10000 
1423645.40000 
107066*40000 
107088*40000 
377959*00000 
409455*50000 
163762*20000 

151183*60000 

359061*00000 
925999*50000 

2078774*30000 
2614216*10000 
1423 645*40000 

107088*40000 
107066*40000 
377959*00000 
409455*50000 
163762.20000 
151183*60000 

24*36000 
12*66000 

12*66000 
13*14000 
13*76000 
10*52000 
31*76000 

5*62 000 
2*80000"^ 
3*09000* 
3*28000-
3*280vJ-

46*45000 
46*45000 
26* 09000 
26*09000 
24*41000 

31*77000 
2*99000 
6*27000-
6*59000-
6*79000-

6*79000-
47*91000 
47*31000 
27*71000 

27* 71000 

23*67000 
28*96000 

2*69000-
12*69000-
13*23000-
13*46000-
13*46000-

46*71000 

46*71000 
24*49000 
24*49000 
20* 05000 
10*95000 
23*86000-
35*08000-
35*46000— 
35*71 OOO-
35*71000-
30*48000 
30*48000 
6*04000 
6*04000 
l*lbOOO 
4* 95000-
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EXSCbTOR* MPSX RELEASE 1 MOO LEVEL 5 

M8ER *COLUMN* AT ***ACTI VITV* ** ** II4PUT COST** ** LOWER I.IMIT* 

554 F41276 LL 4 3S32* 7000 0 29*88000 43532*70000 
555 F41376 LL 634 77* 80000 10*40000 63477*80000 
556 F41476 LL 127546*00000 9*18000 127546*00000 
557 F41576 LL 26348*90000 t1*68000 26348*90000 
558 F4 1676 LL 14 079» 5000 0 45*97000 14879*50000 
559 F41775 LL 19250*0000 0 33#70000 19250*00000 
560 F4te7(S LL 29125* 70000 31*45000 29125*70000 
561 F41976 LL 37555*4:0000 31*45000 37555*20000 
562 F4177 LL 23V81* 60000 14*10000 23781*00000 
563 F4277 LL 8()79# 40000 51*93000 8979* 40000 
564 F4377 LL 18045*30000 37*28000 18045*30000 
565 F4477 LL • 8*97000 # 

566 F4577 LL 6591108* 20000 24*76000 659108*20000 
567 F4677 LL 74 333* 6000 0 14*73000 74333.60000 
568 F4777 LL * 8*200U0 * 

569 F4877 LL Ib8«:b6* 0000 0 28*85000 168256.00000 
570 F4977 LL 5905:1* 20000 11*21000 59453*20000 
571 F41077 LL 634)00*00000 8*78000 63400*00000 
572 F41177 LL 392371'* 7000 0 29*24000 392377*70000 
573 F41277 LL 45«!7£* 5000 0 31*97000 45272*50000 
574 F41377 LL 63987*60000 11*13000 63987*60000 
575 F41477 LL l£8n8?* 30000 9*82000 128187*30000 
576 F41577 LL 27<;3e»50000 12*50000 27238*50000 
577 F41677 LL 1576:1* lOODO 49*19000 15763*10000 
578 F41777 LL 21 1100*00000 36* 06000 21100*00000 
579 F4ie77 LL 31^73*40000 33*65000 31273*40000 
580 F41977 LL 4 2625*30000 33* 65000 42625*30000 
581 F42077 LL * 7*77000 * 

582 F41 78 LL 2!5.?3*/* 4000 0 15*09000 25237*40000 
583 F42 76 LL 9321*20000 55*56000 9121*20000 
584 F4378 LL 19<'>7:U 9000 0 39*73000 19273*90000 
585 F4478 LL * 9*60000 * 

566 F4578 LL 6T3:!13* 10000 26*39000 673213*10000 
587 F4678 LL T7 286* 70000 15*76000 77286*70000 
588 F4778 8S 1J;859R* 80016 8*78000 * 

589 F 48 78 LL 1 :F2IO»* 00 000 30*74000 1 72108*00000 
590 F4978 LL 62330*70000 12*00000 62530.70000 
591 F41C78 LL <Ï4 893* 7000 0 9*40000 64893*70000 
592 F41173 LL 3%7$26*40000 31*29000 397426*40000 
593 F41278 LL 4^9326*00000 34*08000 49326*00000 
594 F4137S LL 64 273*6000 0 11.91000 64273.60000 
595 F4I47Ô LL 132^07*30000 10*51000 13220 7* 30000 
596 F41S78 LL 29432*80000 13*37000 29432*80000 
597 F41678 LL R7342* 60000 52*63000 17342*60000 
598 F41778 LL 2000 0 38*43000 23222*20000 
599 F4 1878 LL 33282* 50000 35*87000 33282*50000 
600 F4197a LL 46386*40000 35*87000 46386*40000 
601 F42078 UL 1637 822* 10 000 8*32000 * 

602 F4179 LL 2638V*00000 16*13000 26389*00000 
603 F4279 LL 9 863* 4000 0 59*45000 9863*40000 

604 F4379 LL 21 863* 7000 0 42*51000 21863*70000 

• •UPPER I.IM1T* •REDUCED COST» 

110238» 00000 
67402«70000 

212916*90000 
34646»20000 
66142«80000 
56693*80000 

139844*80000 
134 175*40000 

29606*80000 
37795*90000 
52284*30000 

I 16537*30000 
1385849*50000 

94«89*70000 
I 88979*50000 
220476*10000 
75591*80000 
75591*80000 

529142*50000 
110238*00000 

67 402*70000 
212916*90000 

346*6*20000 
66142*80000 

56693* 80000 
139844*80000 
134175*40000 

1637822*lOpOO 
29606*80000 
37795*90000 
52284*30000 

116537*30000 
1385849*50000 

94489*70000 
188979*50000 
220476 * 10000 

75591* 80000 
75591*80000 

529142*50000 
110238*00000 

67402*70000 
212916* 90000 

34 646*20000 
66142*80000 
56693*80000 

139844*80000 
134 175*40000 

1637822*10000 
29606*80000 
37795*90000 

52284*30000 

23*58000 
4*10000 
2*88000 
5*38000 

39*67000 
27*40000 
25*15000 
25*15000 

6*61000 
44*44000 
29* 79000 

l*480u0 
17*27000 

7*24000 
*71000 

21*36000 
3*72000 
1*29000 

21*75000 
24*48000 
3* 64000 
2*33000 
5*01000 

41*70000 
28*57000 
26*16000 
26*16000 

*28000 
6*31000 

46*78000 
30*95000 

*82000 
17*61000 
6*98000 

21*96000 
3*22000 

*62000 
22*51000 
25*30000 

3*13000 
1*73000 
4*59000 

43*85000 

29*65000 
27*09000 
27*09000 

*46000» 
7*15000 

50*45000 
33*51000 
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EXECUTOR* MPS» RCLEASE & MOO LEVEL 3 

8ER *COLUMN* AT **«.A<:T£VITy*** *oINPUT COST** *oLO«SR LIMIT* 

860 P91879 LL 1«8$6«*70000 7*34000 88660*90000 
861 F6179 UL 6<>7 727*50000 2*92000 * 

862 F6279 LL 69f3&*700DO 16*26000 69731*70000 
863 F6379 LL 70244*40000 16*26000 70244*40000 
864 F6479 LL 75&7!1*20000 14*46000 75678* 20000 
865 F6579 LL 1569.-2*60000 29*59000 15692*60000 
866 F8679 LL 12549*70000 34o 77000 12549*70000 
867 F6779 LL !12B4 1*80000 34*77000 128*1*80000 
868 F6879 LL 41622*90000 25* 111000 41622*90000 
869 P6979 UL «>6800*00000 7*34000 96777*40000 
870 F5180 LL 75278*60090 17*46000 75278*60000 
871 F5280 LL 78635*60000 17*45000 78635*60000 
872 F5380 LL #3466*90000 14*40000 83466*90000 
873 F5480 LL 73639» 20000 17*99000 73639*20000 
874 F 5580 LL 7254 0*00000 17*90000 72540*00000 
875 F5680 LL 110125*60000 15*77000 110129*60000 
876 F5780 LL 62678*90000 15*97000 62678*90000 
877 F5980 LL 42877*50000 23*07000 42877*50000 
878 F51060 LL 47388*60000 21*70000 47308*60000 
879 F51200 LL 41280*00000 24*40000 41250*00000 
880 F51300 LL 401474* 30000 21*61000 48474*300 OO 
881 F514»0 LL 46883*00000 25*8(1000 48883*00000 
882 F51500 LL 46,287*30000 23*03000 46287*30000 
883 F51680 UL 333^338#20000 3* 30000 * 

884 F51700 LL 12:256*40000 39*81000 12256*40000 
885 P51800 UL 100562* 70000 7*85000 89785*00000 
886 F6180 UL 667*727*50000 3*12000 # 

887 F6280 LL 70679*00000 17*40000 70679*00000 
888 F6380 LL 71 422*50000 17*40000 71422*50000 
889 F6480 LL 70238*60000 19*47000 76238*60000 

890 F6580 LL 1»8(15* 00000 31*66000 15885*00000 
891 F6680 LL 1:1111*00000 37*20000 13111*00000 
892 F6780 LL 1:12*2* 0000 0 37*20000 13242*00000 
893 F6880 LL 4a002*00000 26*91000 42002*00000 
894 P6980 UL 9<>800* OOOOO 7*89000 96543*00000 
895 FS181 LL 7lk8:*2* OOOOO 18*51000 76832* OOO OO 
896 F528I LL 7U211#90000 18*90000 79211*50000 
897 F536I UL %W&9:18*40(M)0 19*33000 84275*00000 
898 F9481 LL 749<)8*60000 19*03000 74098*60000 
899 F5581 LL 73777*60000 19*04000 73777*60000 
900 F568I 05 j*0(»901#80015 16*72000 119250*00000 
901 F57ai LL 6.1802*40000 16*93000 63892*40000 
902 F5981 LL 437(14* OOOOO 24*46000 43784*00000 
903 F510S1 LL 4#633*OOOOO 23*00000 48633*00000 
904 F51281 LL 42272*60000 29*86000 42272*60000 
90S F5139i LL 4» 1^25*00000 22*91000 49125*00000 
906 F51481 LL 49432*OOOOO 27*41000 49432*00000 
907 F51581 LL 47144*50000 24*39000 47144*50000 
9C8 F51681 UL 33323;)8*20000 3*43000 * 

909 F51781 LL 133*9» 60000 42*20000 13389*60000 
910 P91881 UL ;10BS»2* 70000 8*40000 92373*80000 

UPPER LIMIT, REDUCED COST 

10e962«70000 
667727*90000 
125986*30000 
129986*30000 

302367*20000 
29197*30000 

182680*20000 
176980*80000 
191183*60000 

06800* 00000 
220476*00000 
220476*00000 
566938*40000 
163782*20000 

163782*20000 
346462*40000 
850407*70000 
100789*00000 

132285*60000 

157482*90000 
201578*10000 

90394*50000 
62993*10000 

3332338*20000 
264571*30000 
108562*70000 

667727*50000 
125986*30000 
125986*30000 
302367*20000 

25197*30000 
182680*20000 
176380*80000 
151183*60000 

%800*00000 
220476*00000 
220476*00000 
566938*40000 
163782*20000 
163782*20000 
346462*40000 
850 407.70000 
94489*70000 

132285*60000 
157482*90000 
201978*10000 
50394*50000 
62993*10000 

3332338*20000 
264971*30000 
108562*70000 

1*66000* 
6*08000» 
7*26000 
7*26000 
5*«6000 

20*59000 
25*77000 
25*77000 
16*15000 
1*66000-

5* 16000 
5*15000 
2*16000 

5*65000 
5*66000 
3*47000 
3*67000 

10*77000 
9*40000 
12*10000 
9*31000 

13*56000 
10*71000 
9*00000-

27*51000 
4*45000» 

9*16000-

5*10000 
5*10000 
3*17000 

19*36000 
24*90000 
24*90000 
14*61000 

4*45000-
1*79000 
1,78000 

1*39000-

2*31000 
2*32000 

*21000 
7*74000 
6*28000 
9*14000 
6*19000 

10*69000 
7*67000 

13*29000-
25*48000 
8*32000-
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ExeCurOR* I4PSX REWiSASE 1 MOD LEVEL 5 

UMBER •COLUMN* AT ##* %CTXVI TV# ## # #INPUT COST## *.LOWER LIMIT. 

962 F6283 UL 1^4986*3300» 21.32000 73271,00001) 
«63 F6383 UL 123986a30000 21*32000 74342.70000 
964 F6483 VL 30^J67# 20000 18*95000 78271.50000 
965 F6583 UL 23197#3000» 38*79000 19118.6000) 
966 P6683 UL 182680» 20000 45*58000 15671.40000 
967 F6703 VL 17&360»8000 0 49*98000 16923.60003 
966 P6883 UL 151183*60000 32*97000 44 092.50000 
969 P6983 UL 9&aOO* 0000 0 9*62000 96777.00003 
970 F5184 UL 22 04 76 #0000 0 22*04000 76209.00000 
971 FS284 UL 2204 76# 00000 22* 03000 84 007.50000 
972 F5384 UL 5&&938»4000 0 18*26000 88116.50000 
973 F 5484 UL 163762*2000 0 22*67000 77408.00000 
974 F5584 UL 163762*20000 22*68000 76283. 70009 
975 F5664 UL 34I&462#40000 19.91000 131421.90000 
976 F5784 UL 8504 07* 7000 0 20*16000 69230.00000 
977 F5984 UL 75S91#aOOOO 29.13000 46119.00000 
976 FS1084V UL 132265*60000 27*39000 51176.00000 
979 F51284 UL 157462#90000 30*60000 43662.00000 
980 F51384 UL 201578# 10000 27.28000 51678.90000 
961 FS1480 W. 90394*5000 0 32.64000 . 
982 FS1584 UL 62993*10000 29*05000 9034 7.500 0 0 
983 F5t684> UL 3332338# 2000 0 3# 86000 . 
984 F517a4 UL 264971#3000 0 50.26000 15664.00000 
96S> P51664> UL 1065^2#70000 10*30000 95212.00000 
986 F6184 UL 667T27#5000 0 4#10000 . 
967 F6284 UL 1259«8#30000 22.81000 7434 7.80000 
960 F6384 UL 125966# 3000 0 22.61000 75256.OOOOO 
989 F64Q4 UL 302J67#20000 20.28000 75482.00000 
990 F6584 UL 25197#30000 41.50000 21326.80000 
991 F6684 UL 182660#20000 48. 77000 16997.20000 
992 F6784 UL 1 7&J60# 80000 46*77000 17250.00000 
993 F6B84 UL 151 183*60000 35*28000 44751*60000 
994 P6984 UL 96800#00000 10*30000 96777.00000 
995 F518S UL 2204 76# 00000 23.37000 7924 7.70000 
996 F5285 UL 2204-76*00000 23é 35000 65336.00000 
997 FS3e5 UL 566938*4000 0 19.35000 89344.50000 
998 F548S UL 163T62#2000 0 24.03000 78511.00000 
999 F 5585 UL 163782*20000 24.04000 79607.40000 

1000 FS685 UL 3464)62*4000 0 21.11000 138119.00000 
1001 F5785 UL 850407*70000 21*37000 72345*60000 
1002 Fsçes UL 69292* £000 0 30*88000 47122.00000 
1003 Fsioas UL 132«!8S*60000 29*04000 51324*60000 
1004 F51285 UL 157482*90000 32*65000 44766*80000 
1005 F51385 UL 201578* 1000 0 28*92000 52348#90000 
1006 FS1485 UL S02i94«s0000 34*60000 50377*00000 
1007 F51585 UL 62Sf93* 1000 0 30*60000 51530*00000 
1008 FS1685 UL 3332^)38*2000 0 4*01000 . 
4 009 FS178» UL 264S71*30000 53*26000 :6337#00000 
1010 PS188S UL 108<>62* 70000 11*01000 97556*00000 
1011 F618S UL 667727*5000 0 4*38000 # 

1012 F6285 UL 12Si)86$ 30000 24*41000 77279*50000 

«•UPPER LIMIT* «REOUCEO COST. 

125986*30000 26*40000-
125986#30000 26#40000-
302367*20000 28*77000-

25197*30000 8.93000-
182680*20000 2.14000-
1 76380*60000 2.14000-
151183*60000 14.75000-

96600*00000 38*10000-
220476*00000 47.45000-
220476*00000 47.46000-
566936*40000 51.23000-
163762*20000 46.82000-
163782*20000 46.81000-
346462*40000 49.56000-
850407*70000 49*33000-

75 591*60000 40*36000-
132285*60000 42.10000-
157482*90000 38.69000-
201578*10000 42.21000-
50394.50000 36.85000-
62993*10000 40.44000-

3332338*20000 65.63000-
264571*30000 19.23000-
108562.70000 59.19000-
667727.50000 65.39000-
125986#30000 46*68000-
125966.30000 46.68000-
302367# 20000 49.21000-
25197.30000 27.99000-

182680.20000 20.72000-
176380#80000 20# 72000-
151183.60000 34#21000-

96800.00000 59#19000-
220476.00000 55.31000-
2204 76.00000 55.33000-
566938.40000 59.33000-
163782.20000 54.65000-

163782.20000 54.64000-
346462.40000 57.57000-
650407.70000 57.31000-
69292.50000 47.80000-

132285.60000 49.64000-
157462.90000 46, 03000-
201576.10000 49.76000-
50394.50000 44.08000-
62993.10000 47.88000-

3332338.20000 74.67000-
264571*30000 25.40000-
108562*70000 67.67000-
667727*50000 74.30000-
125986*30000 54.27000-
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EXECUTOR* IIPTiX ftlU.CA8E I MOO LEVEL S 

NUmSE» *COLVMN* AT *4i*<lC71VITV**e «•INPUT C09T*t **LO«ER LIMIT* 

1166 F71284 UL «01)802* 20000 10*53000 29593 5* 80000 
1167 F7I364 UL '»7244 8* 70000 15»82000 67aa9*30Qi00 

1168 F71484 UL <>51 196*70000 7* 03000 237310^80000 
1169 F71584 UL «51972*60000 29*47000 4719I^20000 
1170 F71884 UL i:S291^5* 70 )00 0*65000 701199*00000 
1171 F71784 UL 787414*90000 8*65000 693329*90000 
1172 F71(5 UL 922»I3*20(>00 92*61000 37777*90000 
1173 F7385 UL 1132205*60000 40* 86000 61498*20000 
&174 F 7485 UL 1170001*90000 37*16000 62323*80000 
1175 F7585 UL 176330* 80000 40*26000 97749*40000 
1176 F7685 UL 491»»6* 60000 92*61000 33840*00000 
1177 F77«5 UL i;209408* 70000 2*61000 * 

1178 F7885 UL i;!094t)8* 70000 2*01000 * 

1179 F79e5 LL 191103*60000 18*97000 8S349.60000 
1180 F71085 UL 163732*20000 15*06000 163116*70000 
1181 F71185 UL 3212<>9* 10000 13*68000 224633*50000 
1182 F7128S U. moo 802* 20)00 11*06000 301 412*70000 
1183 F7138S UL 172 4^» 8* 70000 16*01000 71744*4 0000 
1184 F71489 UL 991196* r0«)00 8*33000 241248*90000 
1185 F71985 UL .291972* 60 )00 30*99000 49322*10000 
1186 F7168S UL 1129155*70000 9*09000 723498*90000 
1187 F71T8S UL 787414* 50000 9#09000 667948*40000 
1188 F71885 UL 092924*70000 2*01000 * 

1189 F8175 LL 29205* 30 000 12*C0000 29209*30000 
1190 F8275 LL 32314*70000 12*02000 32314*70000 
1191 F8375 LL 7183Z.10000 11*04000 71832.10000 
1192 F8475 LL 107687*40000 ii*aiooo 107687*4 0000 
1193 F8575 LL 171326*80000 10*09000 171326*80000 
1194 Fê6T5 UL 1239863* 20000 2*71000 * 

1195 P8775 UL 182680*20 000 2*01000 182679*80000 
1196 F 8176 LL 32422*20000 13*34000 32422*20000 
1197 F82T6 LL 33020* SO000 13*00000 3302 0*50000 
1198 F8376 LL 72377*80000 12*42000 72377*80000 
1199 Fe4T6 LL 109548*60 000 11*96000 109548*60000 
1200 F85T6 LL 175447*40 000 10*06000 17944 7*4 0 000 
1201 F86T6 LL 129.9863*20000 2*02000 * 

1202 P87T6 UL 102680*20000 2*71000 182679*00900 

1203 F8ir7 LL 34519*10000 19*28000 34919*10000 
1204 F8277 LL 35110*60000 19*99000 39110*60000 
1205 F8377 LL 74998*00000 17*99900 74998*00 000 
1206 Fe477 LL 15338*40000 17*39000 79338*40000 
1207 F85T7 LL 178455*00000 19*69000 1 78499*80000 
1208 F86r7 UL 1259863*20000 2*93000 * 

1209 P8777 UL 16)2680*^0000 2*81000 182679*60000 

1210 F81T8 LL 35897*20000 21*17000 39897*20000 
1211 F8278 LL j:6323* SO 000 21*90000 36323*50000 
1212 F831'8 LL 79114*60000 19*71000 79114*60000 
1213 F8478 LL 16819*90000 18*98000 76819*90000 
1214 F8578 LL 11)1440*00000 17*23000 181440*00000 
1219 F8678 UL 12$9863*20000 3*09000 * 

1216 P8778 UL 102680*20000 2*91000 182679*80000 

••UPPER LIMtT^ •neoucEo COST» 

900Q02»20000 
472448»70000 
951|96»70000 
291972«60000 

l329a8S»70000 
7874*4#50000 
522843#20000 
I32205#60000 
t70081#50000 
I76300#80000 

491346#60000 
1209408#70000 
1209468*70000 

tSl183*60000 
163782#20000 
321265#10000 
900802*20000 
472448# FOOOO 
951198*70000 
251 972*60000 

1329159# y0000 
787414#50000 
692924# 70000 

62993*10000 
62993*10000 
81891*10000 

119687*00000 
245673*30000 

1259863*20000 
182880*20000 

62993*10000 
62993*10000 
81891*10000 

119687*00000 
245673*30000 

1259863*20000 
182680*20000 

62993*10000 
62993*10000 
81891* lOC'OO 

119687*00000 
245673*30000 

1259863*20000 
182680*20000 

62993*10000 
62993*10000 
81891*10000 

119687*00000 
245673*30000 

1259863*20000 
182680*20000 

58*96000-
53*67000-
61*56000-
40*02000* 
60*84000-
60*84000-
26*07000-
38*42000-
41*52000-
38*42000-

26*07000-
75*87000-
75*87000-

60* % 1000-
62*72000-
65* 00000— 
67*62000-
62*07000-
70*35000-
47.73000-
69^59000-
69*59000-
75*87000-

4*73000 
5*15000 

3#67000 
3*44000 
2*42000 
4*96000-
5*06000-

7*04000 

7*50000 
6# 12000 
5*66000 

4*56000 
3*48000-
3*59000-

11*79000 

12*46000 
10*46000 

9*00000 
8*20000 
4*56000-
4*68000-

12*39000 
13*12000 
10*93000 
10*20000 
8*45000 
5*730 00-
5*87000-
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IMBU 

126S 
1209 
1270 
1271 
1272 
1273 
127* 
1275 
1276 
1277 

I27B 
1279 
12S0 
1281 
1282 
1283 
128* 
1285 
1286 

EXECUTOR. I<pr>x RELEASE I MOO LEVEL S 

.COLUMN. AT ., .IkCVlVXTV. .. .«INPUT COST.* ..LOUER LIMIT. ..UPPER LIMIT. .REDUCED COST. 

F9I76 LL . 9.20000 . 189216.00000 2.90000 

P9276 LL . 9.20000 . 315360.00000 2.90000 

F9177 LL . 9.77000 . 189216.00000 2.28000 

F9277 LL 9.77000 . 313360.00000 2.28000 

F917.B LL io.eoooo . 189216.00000 2.02000 

F9278 LL 10.80000 . 315360.00900 2.02000 

F917» LL 11.50000 . 189216.00000 2.50000 

F927» LL e IS.SOOOO . 313360.00000 2.50000 

F9I80 OS 89536.20018 12.30000 . 189216.00000 . 
F9280 UL :U33»0. 0000 0 12.30000 . 313360.00000 . 
F9IS1 UL 11892a6. 00000 13.22000 . 189216.00000 3.50000-

F92S1 UL .115300.00000 13.22000 . 313360.00000 3.50000-

F9182 UL I18<>2n6.00000 1*.1*000 . 189216.00000 10.2*000-

F9282 UL •llSSdOk OOOOO 14.1*000 . 315360.00000 10.2*000-

F9183 UL U8<)2a6. 00000 13.06000 . 189216.OOOOO 32.66000-
F 9283 UL 1153 )0. OOOOO 13.06000 . 313360.00000 32.66000-

F918* UL 1189216.00000 16.21000 « 189216.00000 33.28000-
F 928* UL ai'53(i4a OOOOO 16.£1000 . 313360.00000 53.28000-
F918S UL a»>2i4woouoo 17. £3000 . 189216.00000 6I.«3000-
F928S UL JllS3<iO. OOOOO 17. £5000 . 313360.00000 61.*3000-

00 
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XVII. APPENDIX G; FUEL CONSUMPTION AND COST NOMOGRAPHS 

Heat values of fuels consumed by the utility companies vary over 

a broad range according to Weekly Energy Reports (143). For convenient 

reference, some nomographs have been developed so that one can calculate 

the amount of fuel consumed annually by one installed kW of capacity of 

generating units with various heat rates at plant factors of 0.80, 0.85, 

and 1.00. If the values obtained from the nomographs with a 1.00 plant 

factor are multiplied by any plant factor, the corresponding amount of 

fuel consumption per W per year is obtained. 

Figure G.l, Figure G.2, and Figure G.3 indicate the coal consumption 

of generating units with various heat rates in tons per kW of capacity per 

year for various coal heat values at various plant factors. 

Figure G.4, Figure G.5, and Figure G.6 give the oil consumption of 

generating units with various heat rates in barrels per kW of capacity 

per year for various oil heat values at various plant factors. 

Figure G.7, Figure G.8, and Figure G.9 show the natural gas consump

tion of generating units with various heat rates in cubic feet per kW 

of capacity per year for various natural gas heat values at various plant 

factors. 

The following formulas are used to calculate the amount of fuel 

consumed annually by one installed W of capacity of generating units at 

an assumed plant factor: 

For coal-burning units : 
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„ (Heat rate of the unit Btu/kWh) x 8760 x (Plant Factor) 
tons/kjf/year (geat value of coal Btu/ton) x (2000 lb/ton) 

For oil-burning units; 

_ (Heat rate of the unit Btu/kWh) x 8760 x (Plant Factor) 
Bbl/kW/year - (Beat value of oil Ecu/gil) x (42 gal/sbl) 

For gas-burning units: 

£/,„/ (Heat rate of the unit Btu/kWh) x 8760 x (Plant Factor) 
 ̂ ' (Heat value of gas Btu/cf) 

Figure G.IO gives fuel costs in mills per kWh when fuel costs in 

cents per MBtu and the heat rate of the generating units in Btu per kWh 

are known. 
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13.00 8.00 9.00 
c0al btu/lb 

10.00 11.00 
(XI0' I 

12.00 5.00 6.00 7.00 

lO 
00 

' BTU/KWH 

Figure G.I. Goal consumption of generating units with various heat rates for various coal heat 
values at a plant factor of 0.80 in tons/kW/year 
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13.00 8.00 10.00 11.00 
CxlO' I 

9.00 
CQflL BTU/LB 

s.00 6. DO 

Figure G.2. Coal consumption of generating units with various heat rates for various coal heat 
values at a plant factor of 0.Î15 in tonsy'kW/year 
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Figure G.3. Coal consumption of generating units with various heat rates for various coal heat 
values at £i plant factor of 1.00 in tons/kW/year 
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11000 btl/kwh 

10500 btl/kwh 

looœ btu/kwh 

btl/kwh 

9000 btu/kwh 

8»0 btu/kwh 

bow btu/kwh 

7  ̂btu/kwh 

7000 btu/kwh 

130,00 132.00 13tl.0a 136.00 IM.Qa 110.00 l«E.OO IIH.OO 116.00 118.00 150.00 
OIL BTU/GL jxjo' I 

to 
CO 

Figure 6.4. Oil consumption of generating units with various heat rates for various oil heat 
values at a plant factor of 0.80 in barreILs/kW/year 
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11000 btu/kwh 

10500 btu/kwh 

10000 btl/kwh 

7  ̂btlvkwh 

7000 btu/kwh 

138.00 135.00 mo. 00 
OIL BTU/GL 

130.00 

Figure G.5. Oil consumption of generating units with various heat rates for various oil heat values 
at a plant factor of 0.85 in barrels/kW/year 



www.manaraa.com

0500 btu/kwh 

10000 btu/kwh 

9500 btu/kwh 
ii. 
m 
CD 

8500 btu/kwh 
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7500 btu/kwh 

7000 btu/kwh 

150.00 138. 136.00 
L BTU%L 

us.00 130.00 

fO 
00 

Figure 6.6. Oil consumption of generating units with various heat rates for various oil heat 
values at a plant factor of 1.00 in barrels/kW/year 
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10500 btu/kwh 
œg 

10000 btu/kwh 

9500 btu/kwh 

9000 btu/kwh 

^0 btu/kwh 
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7500 btu/kwh 
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109.CO 110.00 103.00 lOM.QO 
NATURAL GAS BTU/CP 

106.00 107,00 
UIO* Î 

101.00 102.00 

to 
00 

Figure G.7. Natural gas consumption of generating units with various heat rates for various natural 
gas heat values at a plant factor of 0.80 in cf/kW/yeajr 



www.manaraa.com

11000 btl/kwh 

jo  ̂btl/kwh 
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Figure G.8. Natural gas consumption of generating units with various heat rates for various natural 
gas heat values at a plant factor of 0.85 in cf/kW/year 
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Figure G.9. Natural gas consumption of generating units with various heat rates for various natural 
gas heat values at a plant factor of 1.00 in cf/WJ/year 
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70.00 75.00 80.00 85.00 90.00 103.00 U û . Q Q  100.00 
CXIÛ* I  

Figure G.10. Fuel costs in mills/kWh of generating units with various 
heat rates for various fuel costs in cents/MBtu 
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XVIII. APPENDIX H: LINEAR PROGRAMMING COMPUTATIONS USING MPSX SYSTEM 

In Chapter V, we have explained the FAN which uses a Linear Pro

gramming optimization technique. There are many linear programming 

solution procedures available for the various makes and models of compu

ters. The majority of these programs have been well-tested and are 

readily available for use. A major drawback that existed in the past 

was that the control language or the control commands to properly execute 

linear program solutions were difficult to learn and difficult to use 

properly (139). Although most linear programming computer programs have 

much in common, each has unique characteristics. 

In this Appendix, we attempt to indicate and describe some of the 

options and procedures of MPSX (which is used in our energy model); and 

how to set up the input data and the control program to convey our solu

tion strategy to MPSX. 

The control program is composed of a set of procedures or commands 

for solving a linear programming problem in an orderly fashion (140). 

A. Data Format 

The input format of MPSX consists of two types of cards: (1) indi

cator cards and (2) data cards. The indicator cards specify the type of 

data that is to follow. Some of these are NAME, ROWS, COLUMNS, RHS, 

BANGES, BOUNDS, AND ENDATA, as shown in Figure H.l. 

Each card is always punched so that its first character is in 

column 1. Each indicator card specifies a certain command and identifies 

a section or block data to the MPSX system. Command cards are placed 
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1 

F 1 

2 3 

- — Field 2 — 

5 12 

Field 3 

15 22 

•Field 4. 

25 36 

F̂ield 5—» 

40 47 

—Field 6-» 

50 61 
N 

* 

A M E Data Sat Name 

ffiNTS CAB T\f» 
N 

* ffiNTS CAB 

R 0 W 
N 
G 
L 
E 

S 
RoiT Name 

G 0 L U M N S 

Column Name Row Name 1 Value 1 Row Name 2 Value 2 

R H S 

RUS Name Rovj Name 1 Value 1 Row Name 2 Value 2 

R Â N G E S 

Range Name Row Name 1 Value 1 Row Name 2 Value 2 

B 0 U 
L 0 
U P 
F X 
M I 
P L 
F R 

N D S 

Bound Row 
Name 

Column Name Value 

E N D A ï A 

Figura H.l. Input format 
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anywhere in the data deck by putting an asterisk (*) in column 1. 

B. Data Preparation 

A NAME card is always the first card in the input deck and an 

ENDATÂ is always the last card used to terminate the data deck. The 

NAME card contains a name (e.g., MODIFL 11, or MODFOOL) in field 3, which 

cannot have more than 8 characters, and is used to identify the data set 

to the MPSX. 

The second data card contains the letters ROWS in the first four 

columns. The purpose of the row section is to define the type of row 

constraints that have been incorporated in the model. There are four 

indicators used to identify the type of row in the model followed by 

some name. The row type is specified according to the following code: 

N = Objective function or nonrestrictive row 

G = Minimum restraint (greater than or equal to) 

L = Maximum restraint (less than or equal to) 

E = Equality 

The objective function or functions are labeled C or C2, G3, etc. in 

columns 5-12 of field 2. The other rows can have any name of not more than 

8 characters entered in columns 5-12. The traditional Rl, R2, ..., BX 

labeling system is used throughout in this study. 

The column section specifies the restriction coefficients and the 

names to be labeled with each structural variable. The word COLUMNS is 

entered in the first 7 columns. Since the MPSX system will originally 

treat all coefficients in our model as zeros, we need only to declare 

nonzero entries in the data deck. 



www.manaraa.com

294 

It should be noted that the matrix elements in the column section are 

specified by column. Hence, once a column name is specified, all other 

nonzero entries in that column must be declared before another column is 

defined. In order to do this, one must first enter the column name in 

columns 5-12 of field 3, and the coefficient values in columns 25-36 of 

field 4. 

The resource vectors are specified in the right-hand side section. 

The input format is basically the same as defined in the column section, 

but a unique RKS name is declared for each resource vector defined. 

The range section can be used to condense the input data. It has the 

effect of making more useful the interpretation of the shadow prices by 

providing ati estimate of the range over which a shadow price is relevant. 

A RANGE card is added to the control deck immediately following the 

SOLUTION card. 

The bound section is used to place bounds on the capacity of gener

ating units. When bounds are not declared they are automatically set at 

zero and positive infinity. The bounds section of the data deck is pre

ceded by the letters BOUNDS in columns 1-6. Because it is possible to 

obtain multiple solutions in the same computer run based upon different 

sets of bounds, names are given to the bound rows, e.g., BNDl, BND2. 

BNDX, to distinguish different bound sets. 

Field 1 specifies the type of bound to be imposed on an activity. 

The following indicators are used: 

UP = Upper bound or maximum 

LO = Lower bound or minimum 
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FX = Fixed bound or minimum 

MI = Lower bound of negative infinity 

PL = Upper bound of positive infinity 

FR = Free variable 

C. Control Program 

The control program is a set of procedures specified by the user to 

define the strategy to be used in solving the model. Table H.l gives an 

example of a general control program used in our study. 

The first command in the control program is PROGRAM which indicates 

to the MPSX system that the program is to follow and includes a listing 

of all coding errors if any are desired. If any errors are found in the 

program, the system will terminate before the input data is read. The 

second command is INITIALZ which establishes initial settings of all 

tolerances at their standard values (139). 

The next two statements move the name of the data, MODEILP, into the 

MPSX cell XDATA and move i±e problem file name, PBFILE, into the cell 

XPBNâME. These two cells must be defined before such procedures as 

CONVERT and SETUP can be indicated in the control program (140). 

M7ADR(XMAJERR,UNB) puts in the location XMAJERR the address of the first 

menÂer of UNB. MVAdR(XDCOTS,NOT) puts in the location of XdONFS the 

address of the first menAer of UNB. 

The CONVERT statement instructs the MPSX system to check tiie input 

data for proper specifications and to convert the data into internal 

representation onto the PROBFILE device with a problem name of PBFILE. 

The next instruction SETUP<*MIN','BOUNDS','BNDl') will allocate 



www.manaraa.com

C 
C TABLE H#1o A GENARAL CONTROL PROGRAM» 
C 

##*##****#** 

PROGR/tM 
XMT1/>>LZ 
MOVE* «C'ATAo 'MODE ILP • t 
MCVÊ(XPENAME,*PBFILE® » 
MVADPC XMAJEPR.UNa* 
MVJICR<[KCaNFS«NOF) 
CCkVECT 
SETUP 4: 'MIN* .  •BOUNDS «o * BMD :  * ) 
MCVEOCRhS •» iE* » 
MCVE(>(OSJ.'>C* ) 
FP IMAL 
PICTLKE 
SOLUTIION 
EXl T 

NOF TRACE 
LNB EX IT 

PEND 
/• 
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memory space within the computer and add appropriate slack variables. 

The added parameter 'MIN' specifies that the problem is to be minimized. 

The parameters 'BOUNDS' and 'BNDl' imply that in the bound section the 

vector BNDl is to be used in solving the problem. If these parameters 

are omitted, the solution given will be obtained without these restric

tions. Since there may exist many objective functions (C's) or resource 

vectors (B's) in the input deck, the following two instructions specify 

which vectors are relevant. In this example, the resource vector, B, is 

moved into the MPSX XRHS cell and the objective function name, C. is 

moved into the cell XOBJ. 

PRIMAL instructs MPSX to apply a variant of the simplex algorithm to 

solve the problem. PICTURE creates a pictorial representation of the 

specified portion of the current matrix. All numbers other than il are 

converted to alphabetic codes that indicate magnitude. 

In order to get the output for the solution the command SOLUTION is 

used. After the solution the commands EXIT and PEND are given. They 

terminate the program and turn over control to the IBM system. TRACE 

creates a report of those vectors that may be related to the cause of an 

infeasibility. 

Table K.2 gives a typical set of job control language cards which 

instruct the computer where to find the MPSX program. The control 

program follows the //MPSCOMP.SYSIN DD * card and the input data follows 

the //MFSEXEC.SYSIN DD * card. 

D. Multiple C Rows 

The convention of labeling the original objective function C and 
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C 
C TABLE M#2O JCIE CCNTRCL (LANGUAGI: CARDS 
C 
C#• •• •• (> •••O «•••«• •• #O#* I E*A 
//C2€STG JCB I437S.GON1EN 
//STEFl exi:C: MP SX 
//MPSCCMP* S'VSIM CO $ 
CCCHTPOI. PRCGR^TML ) 
/* 
//MP SE NEC# SIR SI M OD # 
ICATA > 
/* -

ro 
g 
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subsequent functions C2, C3, CX has been followed in preparing 

control cards. Each C row contained in the model is labeled in the ROWS 

section in the data deck. All C rows are preceded by the letter N in the 

field 1. The name of the row (e.g., G, 02, C3, etc.) appears in field 2, 

left-justified. 

In entering the coefficients C row data are treated the same as 

data from other rows. The column name is given in field 3, and the 

coefficient in field 4. A second row, for example, C2, may be named in 

field 5 and its coefficient in field 6. A control program for the 

multiple C rows is shown in Table H.3. 

E. Combination of Multiple C Rows and Multiple B Rows 

The control program can be extended to include any number of B 

columns by reproducing (with the appropriate B column label for each B 

column intended) the control cards from MOVE through SOLUTION. The B 

column names and coefficients are always entered on the data sheet under 

the RHS section. 

The names given B columns on the data sheet correspond exactly to 

those contained on the control cards. Because of the convention of 

naming B columns B, B2, B3, ..., BX has been followed in preparing the 

control program, the labeling of the B columns in the RHS section of the 

data deck follows the same system. 

Any combination of B columns and C rows may be included in one model 

and a single computer run. Table H.4 shows a control program for the 

combination of multiple C rows and multiple B columns and bounds. 
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c 
c TABLE H# 3. A CONTROL PROGRAM FOR THE MULTIPLE C«S® 
C 
C ••••••<» «>«•••» «••••••• •oAWDAOAe*** ••••••• •••«•« 
//C269TG JOB :437!5,G0NEN 
//«MAIN CRG=AHVLCCAL 
//STEPL E*£:C MP SX 
//MFSCCMFESYSIN CD * 

FRGGAAM 
INITIALZ 
MOVEOCDATA. «MCDIPLI I» I 
MOVE( XPBNAMIE.'PBFILE" » 
MVADR(I>:MAJERR.UNB) 
MVACP It XCOHF S. KOF ) 
CONVERT 
SETUP MIN* .«BOUNCS •» «BNOL • I 
MOVE(!(RHS«* B* ) 
WCVE(XC)BJ» • C« » 
PlCTUlîi: 
PRIMAL 
SAVE 
SOLUTII CM 
MOVE( IXOBJ, 'C2* ) 
PICTUI5I: 
RESTORE 
PR ÎMAL 
Sf VE 
SCLCTIOM 
MovE(xaej«•C3* » 
PICTURE 
RESTORK 
PRIMAL 
SCLUTI ON 
EXIT 

NCF TR7JCE 
UNB EXIT 
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c 
c TAEL6 H«4® A CCNTRCL PRCGF/M FCR THE MULTIPLE C*S AND MULTIPLE 8'S 
C AND BOLND£«> 
C 
C* •«•••(•«••«> <>•••••••••«• «'•••••«•••••o***»***' 
//C2€9TG JOB I437StG0NEN 
//STEPl liXEC HPSK.TIME®MPSEXEC=1 
/•««MAIN LINES=SÇ) 
//MPSC0MP«SVÎ5IN DD * 

PFCGFAM 
INÎTIALZ 
MCVECXOATA,«MOOIPLl1"» 
MOVK(XP ENAME.'PBFILE» ) 
MVADR(KMAJERR*UNB) 
NIVADR ex CO NFS • NCF) 
CCNVERT 
SETUP CM IN* t •BOUNDS «SNOl • ) 
MOVE(XRHS.'B*) 
MCvecxaBj» «CM 
FfilkAL 
SAVE 
seLUT ION 
*IC;VE( X«HS.» E2« ) 
RESTORE 
PRIMAL 
!:A\E 
SOLUTION 
MClVE(XRhS .• B3* ) 
RESTORK 
PR I MAL 
S J i V E  

i S C l L L T l O N  

MCJVE(X«HS. "64** 
RESTCRIE 
PRIMAL 
îSAVe 
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SOLUTION 
MOVE(XR»-S »• E5» » 
RESTORE 
PR IMAL 
SAVE 
SOLLTIQN 
MCVE(XRHSo *66•D 
RESTCFE 
PRIMAL 
SAVE 
SCLUTIQK 
MOVE*XRHS*•B*) 
MCVEcxoej.» C2* Î 
RESTORE 
PR IMAL 
SAVE 
SOLUTION 
MOVE(XRHS,*B2*} 
RESTORE 
PRIMAL 
SAVE 
SCLUTIOK 
MCVE(XRHS.«B3*Î 
RESTORE 
PRIkAL 
SAVE 
SCLUT ION 
MCVE< >RHS»« E4') 
RESTORE 
PR IM/tL 
SAVE 
SCLUTION 
MOVE<XRO-S 0» es• ) 
RESTORE 
PRIMAL 
SAVE 
SCLLTION 

w 
o 
CO 
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MovE{xRhs.'ae* » 
B ESTO HE-
PR IKAU 
SAVE 
SCLUTJICh 
MOVE( XFIHS* * B» } 
WCVEOCOEJ.* C3» ) 
RE STORE-
PR IMAl. 
SAVE 
SCILLTIION 
MOVE* xnhS,•B2*> 
RESTCISE-
PRIMAL 
SAVE 
SOLUT ICK 
MOVE( XFIHS. • 83' ; 
RESTCIRÎE 
PRIMAL 
SAVE 
SCLUTICK 
MOVE(XRHS.'84') 
RESTOIfiE 
PR I  NAIL 
SAVE 
SOLUT ION 
NCVE(XRHS.» E5») 
RESTORE 
PR IMAL 
SAVE 
SOLUTION 
MOVE(XRKS86'» 
RESTORK 
PRIMAL 
SAVE 
SOLCTIOM 
CHECK 

w 
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UNB EXIT 

PENC 

//MPSEXECeSVSIN [)D * 

w 
g 



www.manaraa.com

306 

F. Other Commands 

In order to find out that the proposed model is defined and coded 

correctly, the command PICTURE can be used. This command can appear 

anywhere after the CONVERT statement. PICTURE creates a picture of the 

magnitude of the nonzero coefficients which are indicated by alphabetic 

code. This command is useful in finding errors before a problem is 

executed. 

If one wants to solve one problem and then solve a similar problem 

without starting from step one of the simplex algorithm, the only in

structions needed are SAVE and RESTORE. The SAVE procedure will save 

the optimal basis and is usually placed in the control program after the 

PRIMAL command. The RESTORE instruction will bring back into the solution 

the vectors saved using the SAVE command. The RESTORE statement is placed 

after the second problem is specified and before PRIMAL is called. 

6. Interpretation of Computer Output 

Out main interest centers on sections 1 and 2 of the computer output. 

Section 1 gives the value of the program in the C row of the column 

labeled ACTIVITY. The remaining entries in this column indicate how much 

of the original B column value is used in the production process. 

The shadow prices for the disposal or slack activities are printed 

in the column labeled DUAL ACTIVITY. The C row value which is shown in 

this column should be ignored. The remaining values specify the change 

in the value of the program which would result from one less unit of re

straint (or resource) in the original B column entry. 

Section 2 provides information on the real activities in the solution. 
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Activity levels are printed out under a column labeled ACTIVITY. 

The column INPUT COST only repeats the net prices assigned in the 

original model. Hence they have no significance in interpreting the 

output report except as a means of checking to see that they correspond 

to the values originally intended. 

The lower and upper limit columns will contain meaningful entries 

only when the original model includes provisions for bounding the activ

ities. In the latter case any bounds imposed are printed out as a 

reminder. 

For the purpose of illustration, a computer output report of the 

company 4 (ISP) is presented in the following pages. In this output 

report, the level of activities appears in MWh in order to construct the 

model more easily. 
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EXECUTOH* MPS)( RELEASE 1 MOD LEVEL 5 

CONVERT MOOISP 

TIME = 0,00 

1- ROMS SECTICN» 

O MINOR ERRORCS) -

2- CCLUMNS SECTICKo 

TO pel-1 LI: 

0 MAJOR ERROR(SI* 

This page of the computer output 
gives a svamaxy of the MPSX data -U> in
dicate whether there is an error in rows^ 
aolumns, right hand sides or hounds 
sections, and, if there is, in which sec
tion the errors are. It also gives in
formation about the statistics of the 
problem, e.g., the nvrriber of LP rows, 
variables, and LP elements. 

0 MINOR ERROR(S) - 0 MAJOR ERROR (SU 

3- PHS'S SECTION* 

B 

C MINOR ERROR(S) - O MAJOR ERROR (S). 

S- BOUNDS SECTION* 

BNCl 

0 WINCR EQnCP(S) - 0 MAJOR ERROR(S)* 

PROBLEM STATISTICS 

23 LP ROWS* 24:; VARIABLES, 681 LP ELEMENTS. DENSITY = 12,18 

THESE STATISTICS CONTAIN ONE SLACK VARIABLE FOR EACH ROW 

0 MINOR ERRORS. 0 MAJOR ERRORS, 
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EKEClTCQ. I4PS% RELEASE 1 MOD LEVEL 

SETUP PBFILE 

TIME = (••03 

M IN 
BCCINOS = ENCl 
SCALE 

MATRIX! ASSICKÇC TC MATPIXl 

ETAl ASSIGNED TC ETAJ 

Bas-LaaVLy the oommccnds on this page 
ore gust intermal aormands. They ore not 
neoessopily meaningfuZ to the user. They 
only give information about hou) the space 
in the computer memory should be allocated. 

SCRATCH* ASSIGNED TC SC»ATCHt 
SCRATCH2 ASSIGI^O TC SCIÎATCH2 O 

vO 
MAXIMJM PRICING NOT REQUIRED - MAXIMUM POSSIfîLE 7 

NO CYCLING 

POOLS 
H* REG-EITS MAP 
BOUND VECTOR 
WORK REGICNS 
MATRIX EUFFERS 
ETA BUFFERS 

NUMBER 

9 
3 
3 

SIZE 

20 8 
7152 
32:6 

CORE 
I3e 
2C e 

1872 
21*56 

96$ E 

ROMS 
COLUMNS 

(LOG*VAR*; 
(STRAVAR. ) 

TOTAL 
23 
220 

NORMAL 
I 1 

0 

.FREE, 
I 
n 

FI XEO 
11  

0 

BOUNDED 
0 

220 

681 ELEMENTS DENSITY = 12ol8 - 3 MATRIX RECORDS (WITHOUT BHS'S) 
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PRIMAL OBJ = C QMS = B 

TIME = 0«0* WINS. PRICING 
SCALE = . 

ITER NUMBER VECTOR VECTOR REDUCED SUM 

NUMBER INFEAS OUT IN CCS* INFEAS 

1 IS Ifl 1*1 2*00000 •A4E+07 

2 2C lei g.DOOCO e44E+07 

3 21 2C1 2« 0*300 •AAE+07 

4 13 20 2,?oceo c*4E+07 

5 i(; 1 61 2.00000 «44E+C7 

6 no 1» 16 1,0000»- •38E+07 

7 » 19 a eOOOOC- «33E+07 

6 « 20 S,00000- e30E+07 

9 1(! 21 1«00000- o29E+07 

10 81; «1 1,00000 m20E*07 

11 «(j *9 i.ocoon «IQE+O? 

12 39 13 Î *00000- o 18E+07 

13 6 « ICI 1,00000 94216% 

The optimization iteration togs of 
the program are given on this page for 
the program which has the (C) obseotive 
funation, and the (B) right hand side. 
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EXECUTOQ. MPSX RELEASE 1 '40D LEVEL 

ITEP NUMBER VECTOR VECTOR REDLCED SUM 
NUMBER INFEAS CUT IN COST INFEAS 

e 121 1*00000 212634. 
ts z 28 laOOOtC 76896.3 
16 11 221 1.00000 71912.0 
17 12 241 loOOOOO 68896.6 

M IS 1 3 51 1.00000 31050.0 
19 76 76 1.03000 12310.3 

¥ 20 C 4 75 1.00000 « 

FEASIBLE SOLUTION 

PP[MAL OBJ = c RMS = 8 

TIME = 0,05 WINS, PRICING 7 
SCALE = 1 aOCCCC 

ITER hUKBER vE<rr CR V ECTOR REDUCED FUNCTION 
NUMBER NONOPT OUT IN CCST VALUE 

M 21 193 1.83 183 .84733 .13E + 10 
22 123 1 23 •8*736 •13E+10 
23 110 3 103 .84861 • 15EM0 
24 83 83 .85025 .13E+10 
25 :>2I 242 .86370 .13E*10 
26 <>41 243 .86374 • 13E+10 

M 27 149 197 1 97 • 840 1 5 .13E+I0 
28 !17 7 177 .84012 .13E+1 0 
29 1137 137 .84019 .13E+10 
30 1117 117 .84017 • 13E4-10 
31 97 97 •84192 .13E+10 
32 116 3 1 63 .84723 .13E+1C 
33 :i4 3 143 .84726 .13E+10 

M 34 142 H 57 157 .84098 .13E+10 
35 :ie4 1 84 .78823 «13E+10 
36 !124 124 .78826 .13E+10 
37 IC 4 1 C4 .78829 .132*10 
38 64 64 .7ÇR59 •13E+10 
39 75 63 .81090 .13E+1C 

Basiaatly this page of the computer 
output shows whether the solution is a 
feasible solution. This and the foVLcFJ>-
ing pages continue to show the optimiza
t ion i terat ion logs .  
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a* 39 39 •49651 .IIE+IC 
65 as 25 .5231 5 •IIE+IC 
66 2e 26 .3 3569 .IIE+IQ 
e? 40 «C .31333 .IIE+IC 
88 ea 66 .61212 «11E+1E 
89 lor. 86 .6 2914 • 11E4-1C 
«0 7 •a 41 .2 64 29 .LLE+10 
91 70 76 .44171- .  LLE+10 
S2 ze 42 .2 6429 .11E+10 
93 AS 60 .10779- . I I E + I C  
9* 1 59 59 .0 6677 .LLE+10 

OPTIMAL SOLUTION 

It is shown on this page whether or 
not there is an optimum solution. The 
last iteration mariber^ which is number 
94 in this example, is the number of 
Gauss-Jordan elimination tables that it 
took to get the optimum solution. 
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EXECLTOP. MPSX RELEASE E MOC LEVB. S 

SOLUT ION ( OPT I MAI. ) 

TI HE = 0.06 WINS,. ITESATICN NUMBEP = 9* 

###NAME##» •tt«ACTIVKTV#»• DEFINED AS 

FUNCTICNAL 1Ïa0S93*95«63 C 
restraints B 
eCUNDS.*.. BNDI 

Shown on this page ape the optimum 
solution^ the value of the (C) ohoeotive 
function^ the (B) Tight hand side3 the 
(BNDl) boundŝ  the iteimtion number and 
the time that it took to solve the 
problem^ 
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1 
2 
3 
A 
S 
6 
7 
8 
9 

10 
11 
12 
13 
lA 
IS 
16 
17 
18 
19 
20 
21 
22 
23 

Basioally^ this page gives a swnmary of the input data of the program. 

EXECUTOR* MPSX RELEASE S MOD LEVEL 5 

- ROWS 

• ••now*# AT • ••ACTlVITVa** SLACK ACT IVITY **LOHHR LIMIT* • •UPPER LIMITS • DUAL ACTIVIT' 

c BS lt20S93A95f>63 1120593495*63- NONE NONE 1*00000 
R1 EO 317800 0*00000 a 3178000, 00000 3178000*00000 29*40000 
P2 EQ 33 eaOOÇ» 99999 o 3368999*99999 3368999*99999 31*45000 
R3 EO 35 71 00)0* 00000 * 3571000* 00000 3571000*00000 24*76000' 
RA EQ 37 84 999*99999 * 3784999*99999 3784999*99999 26*39000 
R5 50 4012999. 9999)3 * 4012999*99998 4012999*99998 32.90000 
R6 EQ 4252 999*99998 D 4252999*99998 4252 999*99998 35*83000-
R7 EO 45 08CO C* 00000 e 4508000*00000 4508000*00000 38*33000 
R8 EO 4778999*99999 « 4778999* 99999 4778999*99999 44*67000 
R9 EO 50 64 999*99999 » 5064999*99999 50 64999*99999 53* 90000 
RIC EQ 5368995*99998 • 53 68999*99998 5368999*99998 92*66000 
Rll EC 5691999*99999 a 5691999*99999 5691 999* 99999 99*1500C-
R12 as 31 73000* OOOOO 4504 05*79997 NONE 3628495*79996 • 
R13 BS 33 63999*99999 259405*8000P NONE 362 8405* 79998 • 
RIA BS 35 71000*00000 16952 27*89998 NONE 5266227*89997 * 

R15 as 37 84999* 99999 1481227*89999 NONE 5266227*89998 * 

R16 BS 4012999*99998 1253227,90001 NONE 5266227*89999 • 
«17 BS 42 52 99 9* 99998 1013227* 89999 NONE 5266227*89997 * 

R18 BS 45 08000*00000 758227* 89999 NONE 5266227*89998 • 
R19 BS 4T78999*99999 4872 27*89999 NONE 5266227*89997 * 

R20 BS 5064999*99999 201227*89998 NONE 5266227*89998 * 

R21 BS 52 6622 7*89997 * NONE 5266227*89997 * 

R22 BS 5265227*89997 « NONE 5266227^89997 • 
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sa 
59 
6C 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 

F41676 LL • IkS* 97(K>0 * 66142*80000 
F41776 LL • 33*70000 « 56693*80000 
F41876 BS 93355.80001 311*45000 * 139844*80000 
F41976 UL 134175.4C03C 31*45000 * 134175*40000 
F4177 UL 29606*80090 14*10000 * 29606*80000 
F4277 LL * Kl*93000 * 37795*90000 
F4377 LL • 37*28090 • 52284*30000 
F4477 UL 1 16537*30000 8*97000 * 116537*30000 
F4S77 es %337415.2000 3 214*76000 * 1385849*50000 
F4677 UL 94489*70000 14*73000 * 94489*70000 
F4777 UL 188979*50000 8*20000 * 188979*50000 
F4e77 LL » 28*85000 * 220476*1000" 
F4977 UL 75591*80000 1.1*21000 * 75591*80000 
F41C77 UL 7559:1 *80090 8*78000 • 75591*80000 
F41277 LL * !! 9*24000 • 529142*5000* 
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EXECUTOR* MPSX RELEASE 1 MOD LEVEL 5 

IBER .COLUMN. AT ...ACTIVITY... .«INPUT COST.i 

73 F41277 LL . 31.970CO 

74 F41377 UL 674ft2. 70000 11.13000 

75 F41A77 UL 21291e.9onoc 9.82000 

76 F41377 UL 34646.20000 12.50000 

77 F41G77 LL . 49. 19000 

78 F41V77 LL . 36.06000 
79 F 41 (>77 LL . 33.6500O 

80 F41 977 LL • 33.65000 

81 F42C77 LL 1637822.10000 7.77000 

82 F4178 UL 29606.80000 15.09000 

63 F42 78 LL . 55.56000 

84 F4378 LL. . 39e73000 

85 F4478 U L  I16537.30000 9.60000 

66 F4578 B S  1251 41 5.20031 26. 3 9000 

87 F4678 UL 94489.700OC 15.76000 

88 F 47 78 UL 18897 9.50000 8.78000 

89 F4878 LL . 30.74000 

90 F4978 UL 75591.89000 12 .00000 

91 F41C7e  UL 75S91.80000 9. 40000 

92 F41178 LL . 31.29000 
93 F4127e LL • 34.0 8000 

94 F41378 UL 6740 2.700 00 11.91000 

95 F4147a  UL 212916.900)C 10.51000 
96  F41S7e  UL 346*6.?0000 13. 3 700C 
97  F41678 LL • S2.630C0 

98 F41778 LL . 38.43000 

99  F41378 LL . 35*87C00 

1  CO F41578 LL . 35.87000 
101 F42078 UL 163782 2.10000 8.32000 

102  F41 79  UL 29666.80^00 16.15000 
103 F4279 LL . 59.45000 
104  F43 79 LL . 42.51000 

105 F4479 LL 116537.30000 10.27000 
106  F4579 UL 13858*9.5000C 28.24000 
107  F4679 UL 9*489.70000 17.06000 
108 F4779 UL £ 88979.SOOOf 9.39000 

1-09 F4879 es  93565.70000 32.90000 

• •LOWER Ll MIT, ••UPPER LIMIT. •REDUCED COST. 

110238.00000 

67402*70000 

212916.90000 
3*646.20000 
66142.30000 
56693.80000 

139844.80000 

134175.40000 
1637822.10000 

29606.80000 
37795.90000 
52284.30000 

116537.30000 
1 385849.50*00 

94489.70000 
188979.50000 
220476.10000 

75591.80000 

75591.80000 
529142.50000 
110238.00000 

67402.70C00 

212916.90000 
34646.20000 
66142.80000 
56693.80000 

139844.80000 
334175.40000 

1637822.10000 
29606.80000 
37795.90000 
52284.30000 

116537.30000 
1385 849.50000 

94489.70000 
188979.50000 
220476.10000 

7. 21 COO 

13.63000-
14.940Cn-
12.26000-
24.43000 
11.30000 

8.89000 

8.89000 
16.99000-
11.30000-
29.17000 
13.34000 
16.79000-

• 
10.63000-
1 7.61000-

4.35000 
14.39000-
16.99000-

4.90000 
7.6900'* 

14.48000-
15. 88000-
13.020C0-
26.24000 
12.0400C 

9.48000 
9.4 8000 

18.07000-
16.75000-
26.55000 
9.61000 

22.63000-
4.66000-

15.84000-

23.51000-
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1 1 0  
111 
112 
113 
114 
lis 
116 
117 
lis 
119 
120 
1 2 1  
122 
123 

F 49 79 UL 75S91*8C000 12.98000 . 75 591.8000 0 19.92000-
F41079 UL 75S91*80000 10.05000 . 75591.80000 22.85000-
F41179 LL • 33.48000 . 529142.50000 .58000 
F41279 LL o 36.46000 . 110238.00000 3.56O00 
F41379 UL 67402.70000 12.89000 . 67402.70000 20*01000-
F41479 UL ai29£ e. 90000 11.37000 . 212916.90000 21*53000-
F41 57 9 UL 34646.20000 14.31000 . 34646.20000 18*59000-
F41679 LL « 56.31000 . 66142.80000 23*41000 
F41779 LL . 41.12000 . 56693.80000 8*22000 
=41879 LL . 38.38000 . 139844.80000 5*48000 
F41S7S LL . 38.38000 . 134175.40000 5*48000 
F42C79 UL 1637822.10000 9.00000 . 1637822.10000 23*90000-
F4180 UL 29606.80000 17.28000 « 29606*80000 18*55000-
F42eC LL . 63. 09000 . 37795.90000 27*26000 

W 
to 
O 
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1 25 
126 
127 
128 
129 
130 
1 31 
132 
1 33 
13* 
135 
136 
137 
138 
1 39 
1«0 
141 
142 
143 
144 
145 
146 
147 
148 
149 
ISO 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 

EXECUTOR® MPSX RELEASE 1 WIOD LEVEL 5 

• COLUMN* AT ao*ACTIVITVa *• *oINPUT COST** **LO«=R LIMIT* *m UPPER LIMIT* * REDUCED COST* 

F 43 60 LL * 45*48000 * 52284*30000 9*65000 
F4480 UL a 16 537* 3C0C0 10* 99000 * 116537*30000 24*84000-
F4S8C UL 13 8534 9*50000 30*22000 * 1385849*50000 5*61000-
F 4660 LL 94489* 70000 18*25000 * 94489*70000 17*58000-
F47e0 UL I 88979*50000 10* 05000 * 3 88979*50000 25*78000-
F4 88C LL i! 2 04 76* 10000 35*02000 * 220476*10000 *81000-
F498r UL 75591*80eC0 13* 89000 • 75591«30000 21*94000-
F41C80 UL 75391*80030 10*76000 * 75591*80000 25*07000-
F41ieC as a 13089* 59999 35* 83000 • 529142*50000 * 

F41280 LL * 39*01000 * 1110238*00000 3*18000 
F41280 UL 67402* 70000 13*79000 » 67402*70000 22*04000-
F41480 UL 2129U6*9000C 12* 17000 * 212916*90000 23*66000-
F41580 LL 34646*20000 15*31000 * 34646*20000 20*52000-
F41680 LL » 60*26000 » 66142*80000 24*43000 
F41780 LL • 44*00000 * 566 93 * 8000 0 8*17C0C 
F41680 LL • 41*06900 * 139844*80000 S*23000 
F41980 LL * 41*06000 • 134175*40000 5*23000 
F42C80 LL 16 37822*10000 9*63000 * 1637822*10000 26*20000-
F41 81 UL 29606* 8000 0 18*49000 * 29606*80000 19*84000-
F42 81 LL * 67*50000 * 37795*90000 29*170ftC 
F 43 61 LL * 48*67000 * 52284*30000 10*34000 
F44 81 ML n 16 53 7*3000 0 11* 77000 * 116537*30000 26*56000-
F45ei UL 138530 9*53000 32*33000 * 1385849*50000 6* 00000-
F46 81 UL 94489* 70000 19* 53000 * 94489*70000 18*80000-
F47 81 UL I 8897 9*500 00 10*75000 * 188979*50000 27*58000-
F4eei UL 220476*10000 3 7* 6 7 000 * 220476*10000 *66000-
F49 81 UL 75591*80000 14*87000 * 75591*80000 23*46000-
F41081 LL 75591* 80000 11*51000 * 75591*80000 26* 820 co
F41131 BS 368089*60002 38* 33000 * 529142*50000 rn 
F41281 LL * 41* 75000 * 110238*00000 3*42000 
F41381 UL 67402* 7000 C 14* 76000 * 67402*70000 23*57000-
F41481 UL 212916*90000 13*020^0 * 212916*90000 25*31000-
F41EB1 UL 346ft6* 2̂ 000 16*38000 * 34646*20000 21*95000-
F41681 LL * 64* 47000 * 66142*80000 26*14000 
F41781 LL • 47*08000 • 56693*90000 8*75000 
F4ie8l LL * 43*94 000 * 139 844*80000 5*61000 
F41981 LL • 43*94000 * 134 175*40000 5*61000 
F420ei UL 1637822*10000 10*31000 * 1637822*10000 28*02000-
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213 F41284 UL 110238*00000 52*13000 * a 10238*00000 40*53000-
214 F41384 UL 67402* 70000 18*08000 • 67402*70000 74*58000-
215 F41484 UL 212916*90000 15* 9SOOO * 212916*90000 76*71000-
216 F415e4 UL 346<V6*2000C 20*0 7000 * 34646*20000 72*59000-
217 F41684 UL 66142* 80000 78* 99000 * 66142*80000 13*67000-
218 F41784 UL 56693*80000 58*79000 * 56693*80000 33*87000-
219 F4ie84 UL 1398*4*80000 54* 87000 * 139844*80000 37* 79000-
220 F41984 UL 13417 5*40000 54*87000 * 134175*40000 37*79000-
221 F42C84 UL 1637822*10000 12*63000 * 1637822*10000 80*03000-
222 F4185 UL 29606*80000 24* 24000 * 29606*80000 74*91000-
223 F 42 85 UL 37795*90000 88*49000 * 37795*90000 10*66000-
224 F43EE UL 52284* 3ffOO 65* 03000 * 52284*30000 34*12000-
225 F4485 UL 116537t 30000 15*42000 * 116537*30000 83*73000-
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227 
223 
229 
230 
221  
232 
233 
23* 
235 
236 
237 
233 
239 
240 
2*1 
2*2 
2*3 

EXECLIOR • WPSX RELEASE 1 IWOD LEVEL S 

• COLUMN» *T «.«ACTIVITY.** •* IN^UT COST.. ..LOWER LIMIT. .*UOPE«» LIMIT* * REDUCED COST* 

F*!5e5 UL 13858*5.50000 43*20009 * 1 385 849.50000 55.95000-
F*68S Ul. 9*«89.70000 25.60000 . 94489.70000 73*55000-
F*785 LI. 1 83979. 5000 0 14.10000 . 188979.50000 85*05000-
F*8es Ul. 220*76.10000 50.3 3000 • 220476.10000 48*82000-
F*S85 LI. 7S591.8POOO 19.49000 . 75591.80000 79*66000-
F4ice5 Ul. 75591. eonoo 15*09000 * 75591.30000 84*06000-
p*n185 Ul. 5291*2.soooc 50*26000 * 529142.50009 48*9000r-
F412es Ul. 110238.00000 55*78000 . 110238.OOOOC 43.27000-
F4'138S Ul. 67402.7000C 19.34000 . 67402.7COOO 79*81000-
F41148S LI. 212916.90000 17.07000 o 212916*90000 82.08000-
F41Sm5 LI. 3*6*6.20000 21e*8000 . 34646.20000 77.67000-
F*a685 Ul. 661*2.30000 84.52000 . 661*2.30000 14*63000-
F *178 5 U. 56693.8000e 62.9100n . 56693*80000 36.24000-
F*AA85 UL 1390*4.sceoo 56.71000 . 1398*4*30000 40.44000-
F4a Ç85 UL %34175.4DMOC 58.71000 . 13*175,*C000 4C*4400C-
F4309S UL 163782 2. IQOOC 13.51000 * 1637822*10000 85.64000-
F42184 e!> 102772.10001 92*66000 . 110000*00000 . 
P42185 BIS *25772.10002 99.15000 . *30000 *00000 . 
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XIX. APPENDIX I; GLOSSARY 

Some of the terms met most commonly in discussing energy, both in 

this thesis and in general usage, are defined on the following pages. 

ALGAE - Fast-growing unicellular or polycellular plants that live in 
fresh or salt water. They are distinguished from fungi by the 
presence of chlorophyll and the ability to perform photosynthesis. 

ANTHRACITE - "Hard coal"; coal containing less than 10 percent volatile 
matter; mined mainly in eastern Pennsylvania. 

AUGER MINING - Mining coal by drilling horizontally into the coalbed 
with a large-diameter auger. 

BARREL - A liquid volume measure equal to 42 American gallons. One 
barrel oil = 42 gal (or 336 lb). 

BIOCONVERSION - A general term describing the conversion of one form of 
energy into another by plants or microorganisms. Synthesis of 
organic compounds from carbon dioxide by plants is bioconversion 
of solar energy into stored chemical energy. 

BREEDER REACTOR - A nuclear reactor that produces more fuel than it 
consumes. Breeding is possible because of two facts of nuclear 
physics: 1) Fission of some atomic nuclei produces more than one 
neutron for each nucleus undergoing reaction. In simplified 
terms, then, one neutron can be used to sustain the fission 
chain reaction and the excess neutrons can be used to create more 
fuel. 2) Some nonfissionable nuclei can be converted into fission
able nuclei by capture of a neutron of proper energy. Nonfission
able uranium-238, for example, can thus be bred into fissionable 
plutonium-239 in a nuclear reactor powered by plutonium. 

A measure of the efficiency of a breeder reactor is the 
breeding ratio, defined as the number of new fissionable atoms 
produced per atom of fusionable species consumed. The practical 
measure of efficiency, however. Is the doubling time, the length 
of time required for a net doubling of the amount of fissionable 
material in the reactor core. Most breeders have doubling times 
of 10 to 15 years. 

Breeder reactors are divided into two types, fast breeders, 
which use high energy neutrons, and thermal breeders, which use 
neutrons of much lower energy. 

BRITISH THERMAL UNIT (Btu) - The amount of energy necessary to raise the 
temperature of one pound of water by one degree Fahrenheit at or 
near 39.2°F (4°C). One Btu is equal to 1054 joules. Conversion 
rates are approximately as follows: 
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1 (42 gal) barrel of oil = 5.67 MBtu 
1 cubic foot of natural gas = 1,031 Btu 
1 KWH of electricity • 3,413 Btu 
1 ton coal = 25 MBtu 

CHAR - The solid, carbonaceous residue that results from incomplete 
combustion of organic material. Char produced from coal is 
generally called coke, while that produced from wood or bone is 
called charcoal. 

COAL - À solid, combustible organic material formed by the decomposition 
of vegetable material without free access to air. Plant debris 
early in the earth's history accumulated underwater in swamps 
and gradually decomposed. With the assistance of anaerobic 
microorganisms, the debris was gradually transformed into peat -
partially carbonized vegetable matter. The conversion of peat 
to coal occurred after most of the water was removed and under 
conditions of increased pressure and temperature. The conversion, 
extending over many millions of years, was progressive, leading 
first to lignite, then to subbituminous, bituminous, and finally 
to anthracite. 

COAL GASIFICATION - The conversion of coal or a gas suitable for use as 
a fuel. 

COMBINED CYCLE POWER PLANT - A power plant in which two or more different 
types of turbines are used to extract the maximum amount of useful 
work from combustion of a fuel. The primary units in such a 
facility are a gas turbine that extracts energy from the combustion 
gases before they are used to produce steam and a conventional 

steam turbine. Additional useful work can also be obtained with a 
turbine operated by a very high-boiling fluid that extracts energy 
from the combustion gases before they enter the gas turbine (a 
topping cycle), or with a turbine operated by a low-boiling fluid 
that extracts additional energy from the spent steam (a bottoming 
cycle). The overall efficiency of a combined cycle system may 
reach 50 percent, compared to the 39 percent efficiency of the 
best steam turbines now available. 

CONVERSION TYPE PROCESS - A method to remove potential pollutants from a 
fuel by converting it to a clean burning fuel, e.g., elimination 
of sulfur from residual oil by hydrogénation-conversion of coal 
to a low sulfur fuel oil, etc. 

CRUDE OIL - Petroleum liquids as they come from the ground. Also called 
simply "crude". 

DEUTERIUM - An isotope of hydrogen in which the nucleus contains a proton 
and a neutron. A deuterium is thus about twice as heavy as a 
hydrogen atom, whose nucleus contains only a proton, but their 
chemical properties are almost identical. The natural abundance 
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of deuterium, the amount of hydrogen that occurs as deuterium in 
nature, is about 0.0156 percent. Deuterium is generally obtained 
by electrolysis of deuterium oxide (heavy water) that has been 
separated from noimal water by fractional distillation or elec
trolysis. It is expected to be the primary fuel for fusion power 
plants. 

ELECTROSTATIC PRECIPITATION - The use of an electric field to remove solid 
particles or droplets of liquid from a gas. Electrostatic precip
itation is increasingly used by coal-burning power plants to 
remove fly ash from the combustion gases. Precipitation results 
from interaction of an electric field maintained within the 
exhaust system and an electric charge induced on the surface of 
the particle or droplet. 

ENRICHMENT - The process of increasing the concentration of fissionable 
uranium-235 in uranium from the naturally occurring level of 
about 0.7 percent to the concentration required to sustain fission 
in a nuclear reactor, generally more than 3 percent. 

ENRICHED URANIUM - Uranium in which the amount of the fissionable Isotope, 
uranlum-235, has been increased above the 0.7 percent contained 
in natural uranium. 

FAST BREEDER - A breeder reactor that operates with neutrons in the fast 
energy range, i.e., with energies greater than 0.1 million 
electron volts. The principal reaction envisioned for most pro
posed fast breeders is conversion of nonfissionable uranlum-238 
to fissionable plutonium-239. 

FISSION - The splitting of an atomic nucleus by a subatomic particle 
(free neutron) to produce a large amount of energy. The energy 
released in fission is much greater than that released in simple 
radioactive decay and, since fission produces neutrons, the 
reaction can be made self-perpetuating. Self-perpetuation, the 
initiation of fission in adjacent nuclei by neutrons from a 
nucleus that has undergone fission, is known as a chain reaction. 
If the chain reaction proceeds slowly, as when some neutrons are 
prevented from hitting adjacent fissionable nuclei by the pres
ence of a moderator, it produces heat that can be used for pro
duction of steam to generate electricity. If the chain reaction 
proceeds to rapidly, it produces an explosion of tremendous force. 

FOSSIL FUEL - Any naturally occurring fuel of an organic nature, such as 
coal, crude oil, and natural gas. 

FUEL CELL - A device for directly converting the energy released in a 
chemical reaction into electrical energy. 
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FUEL OIL - Relatively heavy refined oil used as fuel for producing heat 
or power. 

FUSION - The formation of a heavier nucleus from two lighter ones. The 
loss mass appears as energy in the same manner as in fission. 
The most important reactions considered for a fusion plant are: 
1) The combination of two deuterium nuclei (one proton and one 
neutron a piece) to produce a helium-3 nucleus (two protons and 
one neutron), a neutron, and 3.2 million electron volts of energy. 
2) The combination of two deuterium nuclei to produce one tritium 
nucleus (one proton and two neutrons), one proton, and 4.0 Mev 
of energy. 3) The combination of a deuterium nucleus and a tritium 
nucleus to produce a helium-4 nucleus (two protons and two 
neutrons), one neutron, and 17.6 Mev of energy. Because of its 
high energy release and because it can be initiated at a lower 
temperature, this reaction is most often proposed as the basis 
of fusion power plants. 

GEOTHERMAL ENERGY - The heat energy available in the earth's surface. 

GROSS NATIONAL PRODUCT (GNP) - The total market value of the goods and 
services produced by the Nation before the deduction of depre
ciation charges and other allowances for capital consumption; 
a widely used measure of economic activity. 

HEAT PUMP - A device which transfers heat from a colder to a hotter 
reservoir by the expenditure of mechanical or electrical energy 
when the primary purpose is heating the hot reservoir rather than 
refrigerating the cooler one. A heat pump is essentially a 
reversed refrigeration process. Heat pumps are a far more effi
cient method of electric residential heating than the resistive 
heating now commonly used. 

HIGH-SULFUR GOAL - Generally, coal that contains more than one percent 
sulfur by weight. 

ISOTOPE = Any of two or more kinds of atoms with the same atomic number 
(the same number of protons in the nucleus), but with different 
atomic masses because of differing numbers of neutrons in the 
nucleus. All isotopes of an element have the Sômê number of 
orbital electrons, and thus very similar chemical properties, but 
the differing atomic masses produce slightly different physical 
properties. 

KILOWATT-HOUR (Wi) - The amount of energy equal to one kilowatt in one 
hour; equivalent to 3,413 Btu's. 

LIGHT WATER REACTOR (LWR) - A reactor that uses ordinary water as distin
guished from one that uses heavy water (deuterium oxide, D2O). 
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LIGNITE - A brownish-black coal in which the alteration of vegetal 
material has proceeded further than in peat but not so far as 
subbituminous coal. It has less than 8,300 BTU's when it is 
moist, mineral matter free. 

LIQUIFIED NATURAL GAS (LNG) - Natural gas that has been changed into a 
liquid by cooling to about -160°C for shipment or storage as a 
liquid. Liquefication greatly reduces the volume of the gas 
and thus reduces the cost of shipment and storage. 

LIQUEFIED PETROLEUM GAS (LPG) - Propane, butane, or mixtures of them; 
kept in the liquid state by pressure or refrigeration to facili
tate handling. 

LOW SULFUR COAL AND OIL - Generally, coal or oil that contains one percent 
or less of sulfur by weight. 

MAGNETOHYDRODYNAMIC (MHD) GENERATOR - A technique for generating elec
tricity directly by moving liquids or gases through a magnetic 
field rather than indirectly by means of turbines and rotating 
generators. 

NATURAL GAS - A gaseous fossil fuel generally found in association with 
oil and whose composition varies with its origin. Most unprocessed 
natural gases contain about 60 to 80 percent metliane, 5 to 9 
percent ethane, 3 to 18 percent propane, and 2 to 14 percent 
heavier hydrocarbons. The energy content of raw natural gas 
varies from 900 to 1300 Btu per standard cubic foot. 

OIL SHALE - A Bédimsîiirâry roek eoriuainiug solid orgâûie matter (kercgen) 
that yields substantial amounts of oil when heated to high 
temperatures. 

PETROLEUM - A naturally occurring material (gaseous, liquid, or solid) 
composed mainly of chemical compounds of carbon and hydrogen. 

PHOTOVOLTAIC CELL - A type of semiconductor in ïrtiich the absorption of 
lî t energy creates a separation of electrical charges. This 
separation creates an electrical potential that can be tapped by 
allowing electrons to flow through an external circuit= The net 
effect is direct conversion of light, especially solar energy, 
into electricity. The efficiency of such cells is generally very 
low, however, and their cost is still quite high. 

PROVED RESERVES - Quantities of hydrocarbons which on the basis 
of geological and technical data can almost certainly be con
sidered recoverable from known drilled reservoirs under present 
economic and technical conditions. 

PROBABLE RESERVES - Quantities of hydrocarbons which is hoped can 
be recovered from known reservoirs but without the certainty that 
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would enable them to be Included In the preceding category. 

QUADRILLION BTU - 10̂  ̂(thousand million million) Btu's; approximately 
equal to the heat value of 965 billion cubic feet of gas, 175 
million barrels of oil, or 38 million tons of coal. 

RADIOACTIVITY - The spontaneous disintegration of the nucleus of an atom 
with the emission of corpuscular or electromagnetic radiation. 
These emissions are of three principal types, called alpha, beta, 
and gamma. Gamma radiation is the most dangerous of the three, 
since its penetrating power is approximately 100 times that of 
beta radiation and about 10,000 times of alpha radiation. 

REACTOR - An assembly of nuclear fuel capable of sustaining a fission 
chain reaction. 

RESERVES - The amount of a mineral expected to be recovered by present 
day techniques and under present economic conditions. 

RESERVOIR - A discrete section of porous rock containing an accumulation 
of oil or gas, either separately or as a mixture. 

RESOURCES - The estimated total quantity of a mineral in the ground; 
includes prospective undiscovered reserves. 

SOLVENT REFINING - A method to convert coal and hydrogen under pressure 
to a clean (low-sulfur, low ash) fuel by dissolving most of it, 
then separating the undissolved coal and mineral matter (ash) from 
the extract. 

STANDARD CUBIC FOOT (SCF) - The amount of gas contained in a volume of one 
cubic foot under I standard conditions of temperature and pressure. 

I i. 
STACK GASES - Gaseous substances emitted from power-plant smoke stacks 

during burning of fuel. 

STRIP MINING - The mining of coal by first removing the overburden from 
the coalbed. ' 

SUBBITUnlNOUS COAL - Coal of rank Intermeulate between lignite and 
bituminous. It has calorific value in the range of 8,300 and 
13,000 BTU, calculated on a moist, mineral matter free basis. 

SYNTHETIC FUEL - Gases or liquid hydrocarbon material produced from solid 
carbonaceous material. 

TAR SAND - Any sedimentary rock that contains bitumen or other heavy 
petroleum material that cannot be recovered by conventional 
petroleum recovery methods. 
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THERMAL BREEDER - A breeder reactor that operates with neutrons in the 
thermal energy range; that is, neutrons with energies less than 
1 electron volt. The reaction most often considered for use in 
thermal breeders is conversion of nonfissionable thorium-232 
into fissionable uranium-233. 

UNIT TRAIN - A string of locomotives and cars used exclusively for bulk 
shipment of minerals or coal from the mine to a single point of 
consumption. Because all the cars go to one destination, the 
locomotives can be distributed more efficiently throughout the 
train, there is no expense of assembling the train, and the 
overall cost of operation is substantially lower than for a 
conventional train. 

WASTE HEAT - The heat released to the environment from a power plant. 

WILDCAT - A well drilled in a locality that has not previously produced 
crude oil or gas. 


	1975
	U.S. electrical energy dilemma and an energy model for the electrical utilities of Iowa
	Turan Gonen
	Recommended Citation


	tmp.1412798464.pdf.2H37h

